Experimental Study for a New Energy Dissipation Device: Multiple-Direction Damper

Author(s):  
C. S. Tsai ◽  
L. L. Chung ◽  
T. C. Chiang ◽  
B. J. Chen ◽  
W. S. Chen

The way of passive control technologies has been recognized as an excellent method to mitigate seismic responses of structures during seismic excitations. In general, the energy dissipation devices based on their own mechanical property can be divided into two categories, which are velocity-dependent and displacement-dependent devices. In this study, a new displacement-dependent device which is called multiple-direction damper is proposed. The proposed damper has numerous advantages: (1) the fabrication of this energy-absorbing device is effortless; (2) the construction of the energy-absorbing system is easy; (3) it is simple to install the device into a structure; (4) the material used for this damper is easy to obtain; and (5) if any damage occurs in this damper during strong excitations, this energy-absorbing device can be replaced easily to recover its energy dissipation capacity. Experimental results from component tests show that the proposed damper provides significant energy-absorbing capacity. Furthermore, the multiple-direction dampers have also been equipped into a 5-story steel structure to demonstrate its efficiency on seismic mitigation. The experimental results from shaking table tests indicate that most of earthquake-induced energy imparted into the structure is dissipated by the proposed dampers. In the meanwhile, the seismic loadings imposing on the structure with devices can be reduced effectively as compared with those of the bare structure. Therefore, the multiple-direction damper can be recognized as an effective tool to assure the safety of structure under strong ground motions.

2019 ◽  
Vol 29 (2) ◽  
pp. 74-100 ◽  
Author(s):  
Waseem Sarwar ◽  
Rehan Sarwar

Abstract Retrofit and structural design with vibration control devices have been proven repeatedly to be feasible seismic hazard mitigation approach. To control the structural response; supplemental energy dissipation devices have been most commonly used for energy absorption. The passive control system has been successfully incorporated in mid to high rise buildings as an appropriate energy absorbing system to suppress seismic and wind-induced excitation. The considerable theses that are highlighted include vibration control devices, the dynamic behavior of devices; energy dissipation mechanism, devices installation approach and building guidelines for structural analysis and design employing vibration control devices also, design concern that is specific to building with vibration control devices. The following four types of supplemental damping devices have been investigated in this review: metallic devices, friction devices, viscous fluid devices, and viscoelastic devices. Although numerous devices installation techniques available, more precisely, devices installation approaches have been reviewed in this paper, including Analysis and Redesign approach (Lavan A/R), standard placement approach, simplified sequential search algorithm, and Takewaki approach.


Author(s):  
C. S. Tsai ◽  
Tsu-Cheng Chiang ◽  
Chia-Kuan Cheng ◽  
Wen-Shin Chen ◽  
Chih-Wei Chang

Structure equipped with base isolators to decouple the superstructure from its foundation has been recognized as an effective and feasible way to mitigate structural response subjected to seismic loadings. In this study, a new lubricant material for the FPS isolator has been developed. The experimental results from shaking table tests show that the acceleration responses of floors of a structure isolated by the FPS isolators coated with the new Teflon composite can be lessened within a desirable range, and the steel structure with the FPS isolators moves nearly as rigid body motions during earthquakes. To verify the durability of the FPS isolators, the component tests of sliding interface coated with advanced Teflon composite and shaking table tests of steel structure with the FPS isolators subjected to hundreds of earthquake events were performed in this study. The experimental results demonstrate that the advanced Teflon composite can sustain hundreds of reversal loadings, therefore, it can be adopted to lubricate the sliding interface of the FPS isolators. Furthermore, a simplified and a finite element formulation for bilateral-spherical-surface-type FPS have been proposed in this study. The numerical results show that the proposed formulation can well predict the dynamic response of structure with bilateral-spherical-surface-type FPS than the formulation proposed by S. Okamura et at.


2020 ◽  
Vol 10 (4) ◽  
pp. 1410 ◽  
Author(s):  
Guillermo González-Sanz ◽  
David Escolano-Margarit ◽  
Amadeo Benavent-Climent

This paper investigates a new stainless-steel tube-in-tube damper (SS-TTD) designed for the passive control of structures subjected to seismic loadings. It consists of two tubes assembled in a telescopic configuration. A series of slits are cut on the walls of the exterior tube in order to create a series of strips with a large height-to-width ratio. The exterior tube is connected to the interior tube so that when the brace-type damper is subjected to forced axial displacements, the strips dissipate energy in the form of flexural plastic deformations. The performance of the SS-TTD is assessed experimentally through quasi-static and dynamic shaking table tests. Its ultimate energy dissipation capacity is quantitatively evaluated, and a procedure is proposed to predict the failure. The cumulative ductility of the SS-TTD is about 4-fold larger than that reported for other dampers based on slit-type plates in previous studies. Its ultimate energy dissipation capacity is 3- and 16-fold higher than that of slit-type plates made of mild steel and high-strength steel, respectively. Finally, two hysteretic models are investigated and compared to characterise the hysteretic behaviour of the SS-TTD under arbitrarily applied cyclic loads.


2003 ◽  
Author(s):  
C. S. Tsai ◽  
T. T. Wei ◽  
W. S. Chen

Earthquakes can result in terrible disasters. The new technology of structural control has been acknowledged as the better way to reduce the seismic responses of structures during strong ground motions. The passive control that belongs to the structural control technology can be classified into the base isolation and energy dissipation systems. In this study, a new energy dissipation device called as highly plastic material damper has been proposed. This study focuses on testing and exploring the mechanical behavior of the highly plastic damper proposed by the research group in Feng Chia University, Taichung, Taiwan. The damper was tested in the MTS System to sustain cyclic loadings. The tests include the material stability, durability, the relationship between the force and velocity, and the temperature effect on energy dissipation capacity, etc. From experimental results, it is shown that the force-deformation hysteresis loop of the highly plastic material damper looks like an ellipse in shape for small amplitudes, and a quadrilateral shape for large amplitudes. These results express that the mechanical behavior of the highly plastic material damper depends on the velocity in small amplitudes, and on the displacement in large amplitudes. Based on these observations, the highly plastic material damper could be suitable not only for resisting wind loads but also for controlling seismic responses of a structure during earthquakes.


2020 ◽  
Vol 23 (10) ◽  
pp. 2086-2096
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Suchao Li ◽  
Hui Li ◽  
Gangbing Song

In this article, the seismic control of towers incorporated with fluid viscous dampers between sub-towers is investigated experimentally. To replace one entire tower, an alternative scheme consisting of four separate sub-towers is first proposed. Fluid viscous dampers are utilized as energy dissipation devices to be installed between sub-towers. Experimental tests are conducted to study the damping force characteristics. Three control strategies with various distributions of these dampers between sub-towers are developed. Then, a series of shaking table tests are carried out to evaluate the control performance of the proposed control strategies. Different earthquake records are adopted as seismic loadings. Experimental results clearly show a remarkable reduction in the towers seismic responses, including the accelerations, relative displacements, and strains. Rather than attaching dampers in concentrated ways, the strategy of distributing dampers uniformly behaves better.


Author(s):  
C. S. Tsai ◽  
C. S. Chen ◽  
B. J. Chen ◽  
W. S. Pong

The 921 Chi-Chi earthquake was the most destructive earthquake for Taiwan in the twentieth century. The earthquake caused severe damage or collapse to residential and public structures. In addition to the use of traditional earthquake-resistant technologies for retrofitting damaged structures, new structural control technologies have been also adopted. The RADAS (Reinforced Added Damping and Stiffness) device is a new type of earthquake-proof technology. The RADAS device has been proved as a very reliable energy-absorbing device for seismic hazard mitigation through shaking table tests. In this paper, we will present the application of RADAS devices to damaged structures in the 921 Chi-Chi earthquake. It is also illustrated in this study that new structures equipped with RADAS Devices can enhance seismic resistibility, even if earthquakes exceed ML 7.3 magnitude on the Richter scale. Therefore, it is a sensible choice to use RADAS devices to retrofit damaged structures and to enhance the earthquake-resistant capacity of new structures.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1099
Author(s):  
González-Sanz ◽  
Galé-Lamuela ◽  
Escolano-Margarit ◽  
Benavent-Climent

Shape memory alloys in the form of bars are increasingly used to control structures under seismic loadings. This study investigates the hysteretic behavior and the ultimate energy dissipation capacity of large-diameter NiTi bars subjected to low- and high-cycle fatigue. Several specimens are subjected to quasi-static and to dynamic cyclic loading at different frequencies. The influence of the rate of loading on the shape of the hysteresis loops is analysed in terms of the amount of dissipated energy, equivalent viscous damping, variations of the loading/unloading stresses, and residual deformations. It is found that the log-log scale shows a linear relationship between the number of cycles to failure and the normalized amount of energy dissipated in one cycle, both for low- and for high-cycle fatigue. Based on the experimental results, a numerical model is proposed that consists of two springs with different restoring force characteristics (flag-shape and elastic-perfectly plastic) connected in series. The model can be used to characterize the hysteretic behavior of NiTi bars used as energy dissipation devices in advanced earthquake resistant structures. The model is validated with shake table tests conducted on a reinforced concrete structure equipped with 12.7 mm diameter NiTi bars as energy dissipation devices.


Sign in / Sign up

Export Citation Format

Share Document