Reactor Water Environmental Fatigue

Author(s):  
William J. O’Donnell

Existing nuclear plants were designed based on fatigue data obtained entirely in air environments. We now seek to extend the life of these plants, recognizing that many conservatisms were included in the fatigue stress calculations, stress concentration factors and lumped transients. Since we know how these plants were operated, we can quantify the cyclic rates and coolant chemistry. This makes it feasible to use environmental fatigue life evaluation technology which takes credit for the reduced corrosion fatigue damage which occurs during more rapid transients and for reduced dissolved oxygen levels which produce lesser corrosion fatigue damage in carbon and low alloy steels. Accordingly, the use of Fen environmental fatigue life reduction factors which depend on the cyclic rates, coolant chemistry and temperature are quite useful for evaluating the safe fatigue life of aging plants and for license renewal.

Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi ◽  
Akihiko Hirano ◽  
Yuichiro Nomura

Low cycle fatigue life of carbon and low alloy steels reduces remarkably as functions of strain rate, temperature, dissolved oxygen and sulfur in steel in high temperature water simulating LWR coolant. A model for predicting such fatigue life reduction was first proposed in the early 1980s and since then has been revised several times. The existing model established in 2000 is used for the MITI Guideline [6] and the TENPES Guideline [7] which stipulate procedures for evaluating environmental fatigue damage at LWR plants in Japan. This paper presents the most recent environmental fatigue evaluation model derived based on additional fatigue data provided by the EFT Project over the past five years. This model differs not significantly with previous version but does provide more accurate equations for the susceptibility of fatigue life to sulfur in steel, strain rate, temperature and dissolved oxygen. Test data on environmental fatigue of nickel base alloys are available only to a limited extent and there is yet no model for predicting fatigue life reduction in such an environment. The EFT Project has made available considerable environmental fatigue test data and developed a new model for calculating Fen of nickel base alloys. The contribution of environment to fatigue of nickel base alloy is much less compared to that in austenitic stainless steel.


2006 ◽  
Vol 129 (1) ◽  
pp. 186-194
Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Reduction in the fatigue life of structural materials of nuclear components in Light Water Reactor (LWR) water was initially detected and examined by the authors in the 1980s, who subsequently directed considerable effort to the development of a method for evaluating this reduction quantitatively. Since the first proposal of equations to calculate environmental fatigue life reduction for carbon and low-alloy steels was published in 1985 by Higuchi and Sakamoto (J. Iron Steel Inst. Jpn. 71, pp. 101–107), many revisions were made based on a lot of additional fatigue data in various environmental and mechanical test conditions. The latest models for evaluation using Fen of the environmental fatigue life correction factor were proposed for carbon and low alloy steels in the year 2000 and for austenitic stainless steel, in 2002. Fen depends on some essential variables such as material, strain rate, temperature, dissolved oxygen and sulfur concentration in steel. The equation for determining Fen is given by each parameter for each material. These models, having been developed three to five years ago, should be properly revised based on new test results. This paper reviews and discusses five major topics pertinent to such revision.


2004 ◽  
Vol 126 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Makoto Higuchi

The fatigue life of carbon and low alloy steels decreases with reduction in strain rate in high temperature water such as in the case of a light water reactor coolant. The fatigue life reduction also depends on temperature and dissolved oxygen. The fatigue life correction factor Fen has been proposed as a method to assess the fatigue life reduction in such environments. Three different models for calculating Fen for carbon and low alloy steels have been proposed by Higuchi et al., Chopra et al., and Mehta. These models were compared using considerable environmental fatigue data that were tested and published in Japan and USA and piled up in the database “JNUFAD” by the author. These models give somewhat different results in the specific conditions and a revised model for calculating Fen is thus proposed by remedying the particular drawbacks of each. In this model, the same formula is used for carbon and low alloy steels and S*,T*,O*, and ε˙* are adopted in the formula after reevaluating every parameter. The revised proposal shows better correlation with the test data than the previous models.


Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Reduction in the fatigue life reduction of structural materials of nuclear components in LWR water was initially detected and examined by the authors in the 1980s, who subsequently directed considerable effort to the development of a method for evaluating this reduction quantitatively. Following the establishment of equations to calculate environmental fatigue life reduction for carbon and low alloy steels in 1985 by Higuchi and Sakamoto [1], appeared based on numerous new fatigue data obtained under various environmental and mechanical test conditions. The latest models for evaluation using Fen of the environmental fatigue life correction factor were proposed for carbon and low alloy steels in the year 2000 and for austenitic stainless steel, in 2002. Fen depends on some essential variables such as material, strain rate, temperature, dissolved oxygen and sulfur concentration in steel. The equation for determining Fen is given by each parameter for each material. These models, having been developed three to five years ago, should be properly revised based on new test results. This paper reviews and discusses five major topics pertinent to such revision.


1997 ◽  
Vol 119 (3) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James ◽  
T. A. Auten ◽  
T. J. Poskie ◽  
W. H. Cullen

Corrosion fatigue crack propagation tests were conducted on a medium-sulfur ASTM A508-2 forging steel overlaid with weld-deposited alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3–38.3 mm, and depths of 13.1–16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O2 < 10ppb) aqueous environment at 243°C, under loading conditions (ΔK, R, and cyclic frequency) conducive to environmentally assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.


Author(s):  
Jong-Sung Kim ◽  
Se-Hwan Lee ◽  
Tae-Eun Jin

The local brittle zone (LBZ), which has lower tensile properties as well as lower fracture toughness than base metal and weldment, can occur on the heat affected zone (HAZ) of some nuclear components made of low alloy steels due to the carbide coarsening by multi-pass welding and post-weld heat treatment. These variations of material strengths across the welds due to the LBZ can produce strain concentrations when the stress amplitude is large enough to cause cyclic plastic flow. But, it is difficult to find the previous researches about a relation between the fatigue life of LBZ on real nuclear components and plasticity. So, in this study, the microstructures and tensile properties of HAZ on nuclear components are predicted by using the semi-analytical method, and the fatigue lifetimes of welds on nuclear components with the LBZ are evaluated by the finite element method considering the local plasticity and the variations of tensile properties, and the fatigue analysis procedure of ASME B&PV Code Sec.III. Finally, the effect of LBZ on nuclear components on fatigue lifetime is reviewed.


Author(s):  
Hiroshi Kanasaki ◽  
Makoto Higuchi ◽  
Seiji Asada ◽  
Munehiro Yasuda ◽  
Takehiko Sera

Fatigue life equations for carbon & low-alloy steels and also austenitic stainless steels are proposed as a function of their tensile strength based on large number of fatigue data tested in air at RT to high temperature. The proposed equations give a very good estimation of fatigue life for the steels of varying tensile strength. These results indicate that the current design fatigue curves may be overly conservative at the tensile strength level of 550 MPa for carbon & low-alloy steels. As for austenitic stainless steels, the proposed fatigue life equation is applicable at room temperature to 430 °C and gives more accurate prediction compared to the previously proposed equation which is not function of temperature and tensile strength.


Author(s):  
Yan Wei Wu

Abstract Offshore wind system encountered wind, wave, current, soil, and other environmental loads. The support structure is randomly loaded for a long time, which is more likely to cause fatigue damage. In this paper, the NREL 5MW wind turbine and OC4 jacket support structure is selected to perform the time domain fatigue analysis. Commercial software Bladed and SACS are used to perform the required structural responses and fatigue strength calculations. The Stress Concentration Factors (SCF) and S-N curves for the stress calculations of tubular joints are adopted based on the recommendation of DNV GL guidelines. The magnitude of the stress variation range and the corresponding number of counts are obtained by using the rain-flow counting algorithm. Finally, the Palmgren-Miner’s rule is adopted to calculate the cumulative damage ratio and the fatigue life can then be estimated. Fatigue damage ratio and structural fatigue life of each joint during 20 years of operation period are evaluated.


Author(s):  
Gary L. Stevens ◽  
J. Michael Davis ◽  
Les Spain

Draft Regulatory Guide DG-1144 “Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components Due to the Effects of the Light-Water Reactor Environment for New Reactors”, July 2006 [1], and Associated Basis Draft Document NUREG/CR-6909 (ANL-06/08), “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials”, July 2006 [6] provided methods for addressing environmentally assisted fatigue (EAF) in all new nuclear plant designs. In these documents, a new model was proposed that more accurately accounts for actual plant conditions. The new model includes an EAF correction factor, Fen, which is different from Fen methods previously and currently being considered for adoption into the ASME Code. The Fen methods proposed in DG-1144 are also different than the Fen methods utilized by license renewal applicants, as required by the Generic Aging Lessons Learned (GALL) report [2], as documented in NUREG/CR-5704 [4] (for stainless steel) and NUREG/CR-6583 [3] (for carbon and low alloy steels).


Sign in / Sign up

Export Citation Format

Share Document