Implicit Fatigue Design of Piping Systems for License Renewal of B31.1 Plants

Author(s):  
K. C. Chang

The fatigue analysis of older vintage nuclear power plants was normally performed following the implicit method defined in the USAS B31.1, Power Piping Code. The USAS B31.1 Code applies reduction factors to allowable stresses for loadings with specific numbers of cycles. This effectively reduces stress amplitudes due to thermal bending and prevents fatigue damage from occurring. However, it does not provide sufficient detail to address the environmental impacts on fatigue when license renewal application is prepared for a specific plant. Explicit fatigue analyses were performed for many components in plants whose piping was designed by the implicit fatigue analysis methods. Over the years, modified or improved plant operating procedures may have been implemented. More sophisticated calculations became available for use on several components for which some explicit fatigue analyses is required to address the environmental effects for 60 years of operation. This paper addresses the type of information required to evaluate the effect of environmental factors on fatigue in a license renewal application for plants with reactor coolant system pressure boundary piping designed to B31.1 Code.

Author(s):  
Jaegon Lee ◽  
Taesoon Kim ◽  
Chankook Moon ◽  
Kwanghan Lee

Fatigue is one of the most important failure mechanisms to assess integrity and design life of nuclear power plants. Fatigue analysis procedure and the standard fatigue design curve (S-N curve) for the class 1 components are given in ASME code section III NB. However, the existing ASME fatigue design curve does not address the effects of light water reactor coolant environment. The life time of ALWRs is designed for 60 years, and recently the plant life time of currently operating NPPs has been extended 20 years more. If we assess the integrity and design life of major components by fatigue analysis considering environmental factor and S-N curve, the estimated fatigue usage factor will not meet the criterion. In this study, detailed fatigue analysis using three dimensional models were performed to develop the optimized fatigue analysis procedure and their results were compared with other references. The locations considered are the pressurizer surge line, the CVCS charging inlet nozzle and the steam generator economizer nozzle of the advanced power reactor 1400 (APR1400).


Author(s):  
Robert A. Leishear

Water hammers, or fluid transients, compress flammable gasses to their autognition temperatures in piping systems to cause fires or explosions. While this statement may be true for many industrial systems, the focus of this research are reactor coolant water systems (RCW) in nuclear power plants, which generate flammable gasses during normal operations and during accident conditions, such as loss of coolant accidents (LOCA’s) or reactor meltdowns. When combustion occurs, the gas will either burn (deflagrate) or explode, depending on the system geometry and the quantity of the flammable gas and oxygen. If there is sufficient oxygen inside the pipe during the compression process, an explosion can ignite immediately. If there is insufficient oxygen to initiate combustion inside the pipe, the flammable gas can only ignite if released to air, an oxygen rich environment. This presentation considers the fundamentals of gas compression and causes of ignition in nuclear reactor systems. In addition to these ignition mechanisms, specific applications are briefly considered. Those applications include a hydrogen fire following the Three Mile Island meltdown, hydrogen explosions following Fukushima Daiichi explosions, and on-going fires and explosions in U.S nuclear power plants. Novel conclusions are presented here as follows. 1. A hydrogen fire was ignited by water hammer at Three Mile Island. 2. Hydrogen explosions were ignited by water hammer at Fukushima Daiichi. 3. Piping damages in U.S. commercial nuclear reactor systems have occurred since reactors were first built. These damages were not caused by water hammer alone, but were caused by water hammer compression of flammable hydrogen and resultant deflagration or detonation inside of the piping.


Author(s):  
Bruce A. Young ◽  
Sang-Min Lee ◽  
Paul M. Scott

As a means of demonstrating compliance with the United States Code of Federal Regulations 10CFR50 Appendix A, General Design Criterion 4 (GDC-4) requirement that primary piping systems for nuclear power plants exhibit an extremely low probability of rupture, probabilistic fracture mechanics (PFM) software has become increasingly popular. One of these PFM codes for nuclear piping is Pro-LOCA which has been under development over the last decade. Currently, Pro-LOCA is being enhanced under an international cooperative program entitled PARTRIDGE-II (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE - Phase II). This paper focuses on the use of a pre-defined set of base-case inputs along with prescribed variation in some of those inputs to determine a comparative set of sensitivity analyses results. The benchmarking case was a circumferential Primary Water Stress Corrosion Crack (PWSCC) in a typical PWR primary piping system. The effects of normal operating loads, temperature, leak detection, inspection frequency and quality, and mitigation strategies on the rupture probability were studied. The results of this study will be compared to the results of other PFM codes using the same base-case and variations in inputs. This study was conducted using Pro-LOCA version 4.1.9.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Abhinav Gupta ◽  
Ankit Dubey ◽  
Sunggook Cho

Abstract Nuclear industry spends enormous time and resources on designing and managing piping nozzles in a plant. Nozzle locations are considered as a potential location for possible failure that can lead to loss of coolant accident. Industry spends enormous time in condition monitoring and margin management at nozzle locations. Margins against seismic loads play a significant role in the overall margin management. Available margins against thermal loads are highly dependent upon seismic margins. In recent years, significant international collaboration has been undertaken to study the seismic margin in piping systems and nozzles through experimental and analytical studies. It has been observed that piping nozzles are highly overdesigned and the margins against seismic loads are quite high. While this brings a perspective of sufficient safety, such excessively high margins compete with available margins against thermal loads particularly during the life extension and subsequent license renewal studies being conducted by many plants around the world. This paper focuses on identifying and illustrating two key reasons that lead to excessively conservative estimates of nozzle fragilities. First, it compares fragilities based on conventional seismic analysis that ignores piping-equipment-structure interaction on nozzle fragility with the corresponding assessment by considering such interactions. Then, it presents a case that the uncertainties considered in various parameters for calculating nozzle fragility are excessively high. The paper identifies a need to study the various uncertainties in order to achieve a more realistic quantification based on recent developments in our understanding of the seismic behavior of piping systems.


Author(s):  
Simon Kuhn ◽  
Bojan Nicˇeno ◽  
Horst-Michael Prasser

Thermal fatigue is a relevant problem in the context of life-time extension of nuclear power plants (NPP). In many piping systems in NPPs hot and cold water is mixed, which leads to high temperature fluctuations in the region close to the solid wall and resulting thermal loads on the pipe walls that can cause fatigue. One of the relevant geometric test cases for thermal fatigue is the mixing in T-junctions. In this study we apply large–eddy simulations (LES) to the mixing of hot and cold water in a T-junction. We perform a set of simulations by using different formulations of the LES subgrid scale model, i.e. standard Smagorinsky and dynamic procedure, to identify the influence of the modelled subgrid scales on the simulation results. The results exhibit a large difference between the models, which is caused by the use of turbulent viscosity wall–damping functions when applying the standard model.


Author(s):  
Akemi Nishida

It is becoming important to carry out detailed modeling procedures and analyses to better understand the actual phenomena. Because some accidents caused by high-frequency vibrations of piping have been recently reported, the clarification of the dynamic behavior of the piping structure during operation is imperative in order to avoid such accidents. The aim of our research is to develop detailed analysis tools and to determine the dynamic behavior of piping systems in nuclear power plants, which are complicated assemblages of different parts. In this study, a three-dimensional dynamic frame analysis tool for wave propagation analysis is developed by using the spectral element method (SEM) based on the Timoshenko beam theory. Further, a multi-connected structure is analyzed and compared with the experimental results. Consequently, the applicability of the SEM is shown.


Author(s):  
Hiromasa Chitose ◽  
Hideo Machida ◽  
Itaru Saito

This paper provides failure probability assessment results for piping systems affected by stress corrosion cracking (SCC) and pipe wall thinning in nuclear power plants. On the basis of the results, considerations for applying the leak-before-break (LBB) concept in actual plants are presented. The failure probability for SCC satisfies the target failure probability even if conservative conditions are assumed. Moreover, for pipe wall thinning analysis, pre-service inspection is important for satisfying the target failure probability because the initial wall thickness affects the accuracy of the wall thinning rate. The pipe wall thinning analysis revealed that the failure probability is higher than the target probability if the bending stress in the pipe is large.


Sign in / Sign up

Export Citation Format

Share Document