Effect of Side Grooves on Compliance, J-Integral and Constraint of a Clamped SE(T) Specimen

Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Dong-Yeob Park

The effect of side grooves on crack mouth opening displacement (CMOD) compliance, distribution of J-integral and crack-tip constraint parameters Q and A2 along the thickness of a clamped single-edge-notched tension (SE(T)) specimen were studied by finite element analysis (FEA). Focus was on the effect of depth of side grooves on J-integral and constraint parameters Q and A2 for shallow and deep cracks. The 3-D results were compared with those of SE(T) specimens in plane strain. The results show that the effective thickness equation used in ASTM E 1820 to evaluate compliance of side-grooved SE(B) and C(T) specimens can be used for clamped SE(T) specimens with reasonable accuracy. The results also suggest that the depth of the side grooves affects the distribution of the J-integral: the highest J-integral is at the center of the thickness for a SE(T) specimen with side grooves equal to or less than 10% of total thickness, and near the root of the side grooves for side grooves greater than 10% for a deeply-cracked specimen when the applied load P≥PY. The FEA results also show that the depth of side grooves affects the distribution of the constraint parameters: the crack-tip constraint is highest at the center of the thickness for a specimen with 0% side grooves (plain-sided), and near the root of the side grooves for side grooves equal to or greater than 10%. It was also found from FEA that the crack-tip constraint of a SE(T) specimen with 20% side grooves with shallow (a/W = 0.2) or deep (a/W = 0.5) crack is higher than that of a SE(T) specimen with the same crack depth in plane strain. As a result, the J-resistance of a SE(T) specimen with 20% side grooves may be lower than that of the same specimen in plane strain.

2011 ◽  
Vol 488-489 ◽  
pp. 126-129 ◽  
Author(s):  
W. R. Tyson ◽  
G. Shen ◽  
J. A. Gianetto ◽  
D.Y. Park

CANMET-MTL has developed a low-constraint test designed to reduce unnecessary conservatism in the measurement of toughness for use in the assessment of flaws in pipeline girth welds. The design is based on tension loading using fixed (clamped) grips of a single-edge-notched BxB SE(T) specimen, side-grooved to promote plane-strain conditions. Equations have been developed to derive J-integral, CTOD and crack growth from measurement of load and crack-mouth opening displacement. Loading conditions (essentially distance between the grips) have been chosen to reproduce the crack-tip constraint of a circumferential surface flaw in a pipe in service under tensile or bending loads. In this paper, the development of the test and the principal findings from its use will be described.


Author(s):  
Claudio Ruggieri ◽  
Rodolfo F. de Souza

This work addresses the development of wide range compliance solutions for tensile-loaded and bend specimens based on CMOD. The study covers selected standard and non-standard fracture test specimens, including the compact tension C(T) configuration, the single edge notch tension SE(T) specimen with fixed-grip loading (clamped ends) and the single edge notch bend SE(B) geometry with varying specimen spam over width ratio and loaded under 3-point and 4-point flexural configuration. Very detailed elastic finite element analysis in 2-D setting are conducted on fracture models with varying crack sizes to generate the evolution of load with displacement for those configurations from which the dependence of specimen compliance on crack length, specimen geometry and loading mode is determined. The extensive numerical analyses conducted here provide a larger set of solutions upon which more accurate experimental evaluations of crack size changes in fracture toughness and fatigue crack growth testing can be made.


Author(s):  
Timothy S. Weeks ◽  
Jeffrey W. Sowards ◽  
Ross A. Rentz ◽  
David T. Read ◽  
Enrico Lucon

This paper reports an extension of a previous study that compared methods of evaluating J by the crack mouth opening displacement and by surface strain gradients. Here, the surface strain gradients are measured by three-dimensional digital image correlation. The results herein represent a small test matrix that involved evaluation of the J-integral for clamped single-edge notched tensile specimens from API 5L X65 base-metal, weld metal and the adjacent heat affected zone; the J-integral was evaluated by a standardized procedure utilizing the crack mouth opening displacement (CMOD) and by the contour integral method on an external surface strain contour. Digital image correlation provides sufficient full-field strain data for use by this method and is considerably more robust than surface-mounted strain gage instrumentation. A series of validity checks are presented that demonstrate that the data are useful and valuable. Experimental determination of the J-integral is not limited to thoroughly analyzed test geometries and may be achieved with limited instrumentation. Furthermore, the method described does not require a determination of crack size nor any instrumentation that requires access to the crack mouth.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto

In ASTM standard E1820, the single edge bend (SE(B)) geometry is one of those recommended for fracture toughness testing. The width to thickness (W/B) ratio recommended in E1820 for this specimen is 2. However, in certain cases, it is desirable to use specimens having alternative W/B ratios; the range of W/B suggested in E1820 is 1 to 4. In E1820, the crack size a may be evaluated during J-integral or CTOD resistance testing using the crack mouth opening displacement (CMOD) elastic unloading compliance C. The equation given to relate a to C using a dimensionless compliance BCE incorporates Young’s modulus E. For the three-dimensional (3-D) SE(B) specimens that are in neither plane stress nor plane strain condition, this parameter E may be considered as a normalizing parameter varying between extremes E (plane stress) and E/(1−ν2) (plane strain) depending on crack depth (a/W) and specimen W/B ratio. In the present study, 3-D finite element analysis (FEA) was used to evaluate the CMOD compliance of B×B SE(B) specimens with shallow and deep cracks and compared with that from Tada’s plane stress equation. Crack sizes evaluated using plane stress and plane strain assumptions with the 3-D CMOD compliance obtained from FEA were compared with the actual crack size of the specimens used in FEA. It was found that the errors in crack size using plane strain or plane stress assumptions can be larger than 5%, especially for shallow-cracked specimens. In the present study, an effective modulus with values between plane stress and plane strain is proposed and evaluated by FEA for the 3-D B×B SE(B) specimens. The values were fitted to a polynomial equation as a function of u = 1/(√(BCE)+1) for use in estimating the dimensionless compliance for crack size evaluation for B×B SE(B) specimens. It is shown that the errors in crack size evaluation can be significantly reduced using this effective modulus.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Dong-Yeob Park

In BS 7448, Part 2, the stress intensity factor, J-integral and crack tip opening displacement (CTOD) equations developed for evaluation of fracture toughness of a homogeneous material using experimentally measured quantities, such as load-load line displacement, are applied to SE(B) specimens with yield-strength-mismatched welds. The accuracy of this procedure was studied by Gordon and Wang using finite element analysis (FEA). Recently, the so-called “η factor” method for J-integral evaluation of SE(T) specimens with weld-center-line-cracked and yield-strength-mismatched welds was studied by Ruggieri using detailed FEA calculations and the load separation method proposed by Paris et al. For application to strain-based design of pipelines, CANMET has developed equations to evaluate J-integral and CTOD resistance curves for clamped SE(T) specimens of homogeneous materials using experimentally measured load and crack-mouth-opening displacement (CMOD) in a single-specimen procedure similar to that in ASTM E1820. In the present study, the accuracy of using these equations for J-integral evaluation of clamped SE(T) specimens with weld-center-line-cracked and strength-mismatched welds was studied. It was found that the errors in J and CTOD using the equations developed for SE(T) specimens of homogenous materials for these strength-mismatched welds are similar to those for SE(B) specimens with the same weld geometry and mismatch level as reported by Gordon and Wang. It was also found that using the higher of the strength of base and weld metals σY (= (σYS+σTS)/2), (i.e. (σY)w for overmatching and (σY)B for undermatching) in converting J to CTOD gives reasonable and conservative CTOD evaluations for specimens with weld-center-line-cracked and yield-strength-mismatched welds.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950105
Author(s):  
XIANGQIAN FAN ◽  
JUEDING LIU

To optimize the strengthening method using the fiber reinforced polymer (FRP) for the reinforcement of the concrete structure with cracks, the three-point bending test was conducted on the concrete beams wrapped with different layers of FRP materials. The strain gauges were pasted on the surface of the specimens to measure the initial cracking load. The crack mouth opening displacement (CMOD) was utilized to test the load–crack mouth opening displacement curve. According to the improved calculation formula of the fracture toughness, the critical effect crack length [Formula: see text], initiation fracture toughness [Formula: see text] and instability fracture toughness [Formula: see text] of specimens were calculated. The test results showed that, under the same initial crack depth, the peak load of FRP reinforced concrete decreases with the increase of FRP pasting layer. When there was one layer wrapped over the specimen, the instability toughness of the specimen reached the maximum value and the crack resistance was the best. Based on acoustic emission testing method, the acoustic emission parameters of the above-mentioned concrete during fracture process were identified and collected. The optimal layer of the FRP reinforced concrete with cracks was analyzed from the acoustic emission method.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Fracture toughness and J-R curves of ductile materials are often measured under the guidance of ASTM standard E1820 using the single specimen technique and the elastic unloading compliance method. For the standard single-edge notched bend [SENB] specimens, the load, load-line displacement (LLD), and crack-mouth opening displacement (CMOD) are required being measured simultaneously. The load-CMOD data are used to determine the crack extension, and the load-LLD data together with the crack extension are used to determine the J-integral values in a J-R curve test. Experiments have indicated that the CMOD measurement is very accurate, but the LLD measurement is difficult and less accurate in a fracture test on the SENB specimen. If the load-CMOD records is used to determine the crack extension and the J-integral values, experimental accuracies for the J-R curve testing would be increased, and the test costs can be reduced. To this end, this paper develops a simple relationship between LLD and CMOD that is used to convert the measured CMOD record to the corresponding LLD data, and then to calculate the J values for a growing crack in a J-R curve test on the SENB specimen using one single specimen technique. The proposed method is then verified by the experimental data of J-R curves for HY80 steel using the SENB specimens and the load-CMOD data only. The results show that the proposed method is more accurate and more cost-effective for the J-R curve testing.


2010 ◽  
Vol 36 ◽  
pp. 157-161 ◽  
Author(s):  
Tin Gyi Zhang ◽  
Yuan Bao Leng ◽  
Dan Ying Gao

Based on the principle of electrical measurement method, the clip gauge was made to measure the crack opening displacement (COD).Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effect of the fiber volume fraction (ρf) upon the critical crack opening displacement (the critical crack tip opening displacement and the critical crack mouth opening displacement) was studied. The result shows that the effect of ρf on mouth-tip ratio (the ratio of critical crack mouth opening displacement to critical crack tip opening displacement) can reflect its effect upon the critical crack opening displacement. According to the geometrical relationship between the initial crack length and the critical crack opening displacement,calculation method for the initial crack length was proposed. Based on the test result, the formula was established for calculating the critical crack tip opening displacement.


Author(s):  
Dong Hyun Moon ◽  
Jeong Soo Lee ◽  
Jae Myung Lee ◽  
Myung Hyun Kim

Elastic plastic fracture mechanics (EPFM) is the domain of fracture analysis which considers extensive plastic deformation at crack tip prior to fracture. J integral and crack tip opening displacement (CTOD) have been commonly used as parameters for EPFM analysis. The relationship between these parameters has been extensively studied by industry and academia. The plastic constraint factor can serve as a parameter to characterize constraint effects in fracture involving plastic deformation. Therefore, the characteristics of plastic constraint factor are important in EPFM analysis. In this study, the relationship between J Integral and CTOD was investigated by conducting fracture toughness tests using single edge notched bend (SENB) specimens. Also, plastic constraint factor was investigated by using finite element analysis. Numerical analysis was carried out using ABAQUS elastic-plastic analysis mode.


Sign in / Sign up

Export Citation Format

Share Document