Experimental Determination of J-R Curves Using SENB Specimens and P-CMOD Data

Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Fracture toughness and J-R curves of ductile materials are often measured under the guidance of ASTM standard E1820 using the single specimen technique and the elastic unloading compliance method. For the standard single-edge notched bend [SENB] specimens, the load, load-line displacement (LLD), and crack-mouth opening displacement (CMOD) are required being measured simultaneously. The load-CMOD data are used to determine the crack extension, and the load-LLD data together with the crack extension are used to determine the J-integral values in a J-R curve test. Experiments have indicated that the CMOD measurement is very accurate, but the LLD measurement is difficult and less accurate in a fracture test on the SENB specimen. If the load-CMOD records is used to determine the crack extension and the J-integral values, experimental accuracies for the J-R curve testing would be increased, and the test costs can be reduced. To this end, this paper develops a simple relationship between LLD and CMOD that is used to convert the measured CMOD record to the corresponding LLD data, and then to calculate the J values for a growing crack in a J-R curve test on the SENB specimen using one single specimen technique. The proposed method is then verified by the experimental data of J-R curves for HY80 steel using the SENB specimens and the load-CMOD data only. The results show that the proposed method is more accurate and more cost-effective for the J-R curve testing.

Author(s):  
Timothy S. Weeks ◽  
Jeffrey W. Sowards ◽  
Ross A. Rentz ◽  
David T. Read ◽  
Enrico Lucon

This paper reports an extension of a previous study that compared methods of evaluating J by the crack mouth opening displacement and by surface strain gradients. Here, the surface strain gradients are measured by three-dimensional digital image correlation. The results herein represent a small test matrix that involved evaluation of the J-integral for clamped single-edge notched tensile specimens from API 5L X65 base-metal, weld metal and the adjacent heat affected zone; the J-integral was evaluated by a standardized procedure utilizing the crack mouth opening displacement (CMOD) and by the contour integral method on an external surface strain contour. Digital image correlation provides sufficient full-field strain data for use by this method and is considerably more robust than surface-mounted strain gage instrumentation. A series of validity checks are presented that demonstrate that the data are useful and valuable. Experimental determination of the J-integral is not limited to thoroughly analyzed test geometries and may be achieved with limited instrumentation. Furthermore, the method described does not require a determination of crack size nor any instrumentation that requires access to the crack mouth.


Author(s):  
Claudio Ruggieri

This work investigates application of the η-factor (which bears direct connection with laboratory toughness measurements) on accurate and robust estimates of J for clamped single edge notch tension (SE(T)) specimens made of homogeneous and welded materials using load-displacement records. Very detailed nonlinear finite element analyses for plane-strain models provide the evolution of load with increased load-line displacement and crack mouth opening displacement to define the applied load as a separable function dependent upon crack geometry, material deformation and mismatch level. The procedure enables determining the corresponding separation parameters for each specimen geometry thereby allowing evaluation of factor η derived from a load separation analysis. The study shows that η-factors based on load-displacement records defining the plastic area provide effective and accurate toughness measurements for clamped SE(T) fracture specimens. The analyses also revealed that η-factors for clamped SE(T) fracture specimens based on load-line displacement (LLD) records and plastic area are relatively insensitive to weld strength mismatch. Overall, the present results provide a strong support to use η-based procedures in toughness measurements using clamped SE(T) fracture specimens.


Author(s):  
Timothy S. Weeks ◽  
Enrico Lucon

The clamped single edge-notched tension (SE(T)) specimen has been widely used in a single-specimen testing scheme to generate fracture resistance curves for high strength line-pipe steels. The SE(T) specimen with appropriate notch geometry is a low-constraint specimen designed to reduce conservatism in the measurement of fracture toughness. The crack driving force is taken as either the J-integral or crack tip opening displacement (CTOD); it is generally accepted that the two parameters are interchangeable and equivalent using a simple closed form solution. However, the assumption that they are interchangeable, and to what extent, hasn’t been previously investigated experimentally on the same SE(T) specimen. This paper presents multiple test methods that were simultaneously employed on the same SE(T) specimens. The instrumentation includes: clip-gauges to measure surface crack mouth opening displacements (CMOD) and CTOD by the double-clip-gauge method; strain-gage arrays for direct J-integral measurements; and direct-current potential-drop (DCPD) instrumentation for supplementary crack size measurement. A direct comparison of ductile crack-growth resistance curves generated using J-integral and CTOD is presented here where each represents a different experimental and analytical approach. The two methods are in reasonable agreement over a narrow range of crack growth, differing slightly at initiation and diverging with increasing crack growth. Analysis of the supplementary instrumentation (i.e., strain gages, extensometers and DCPD) will be provided in a future publication.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Dong-Yeob Park

In BS 7448, Part 2, the stress intensity factor, J-integral and crack tip opening displacement (CTOD) equations developed for evaluation of fracture toughness of a homogeneous material using experimentally measured quantities, such as load-load line displacement, are applied to SE(B) specimens with yield-strength-mismatched welds. The accuracy of this procedure was studied by Gordon and Wang using finite element analysis (FEA). Recently, the so-called “η factor” method for J-integral evaluation of SE(T) specimens with weld-center-line-cracked and yield-strength-mismatched welds was studied by Ruggieri using detailed FEA calculations and the load separation method proposed by Paris et al. For application to strain-based design of pipelines, CANMET has developed equations to evaluate J-integral and CTOD resistance curves for clamped SE(T) specimens of homogeneous materials using experimentally measured load and crack-mouth-opening displacement (CMOD) in a single-specimen procedure similar to that in ASTM E1820. In the present study, the accuracy of using these equations for J-integral evaluation of clamped SE(T) specimens with weld-center-line-cracked and strength-mismatched welds was studied. It was found that the errors in J and CTOD using the equations developed for SE(T) specimens of homogenous materials for these strength-mismatched welds are similar to those for SE(B) specimens with the same weld geometry and mismatch level as reported by Gordon and Wang. It was also found that using the higher of the strength of base and weld metals σY (= (σYS+σTS)/2), (i.e. (σY)w for overmatching and (σY)B for undermatching) in converting J to CTOD gives reasonable and conservative CTOD evaluations for specimens with weld-center-line-cracked and yield-strength-mismatched welds.


Author(s):  
Gabriel P. de Oliveira ◽  
Gustavo H. B. Donato

Experimental evaluation of geometry-dependent material’s fracture resistance using constraint-designed SE(T) specimens has proved to be an accurate option to assess the structural integrity of pipelines and pressure vessels reducing excessive conservatism. In this context, this work presents procedures for experimental J-integral and CTOD (δ) evaluation using the eta (η) method applied to tension pin-loaded SE(T) specimens made of homogeneous materials and also containing mismatched joints. Initially, the conceptual background is presented, followed by the description of the refined non-linear finite element models developed, which provide the necessary evolution of load with increased load-line and crack mouth opening displacement. As results, are presented η factors for J-integral estimation and CTOD calculations, which are not available in current standardized procedures. The main objective is to allow fracture resistance experimental evaluation using specimens of different a/W-ratios, material flow properties, weld joint configurations and levels of weld strength mismatch. The main motivation is the possibility of enhancing accuracy of pressure vessels and piping integrity assessments, since these later present very close fracture conditions if compared to SE(T) specimens. The present results, when taken together with previous developments, extend the knowledge about the use of pin-loaded SE(T) specimens. The reader should enhance the studies about the topic with the complimentary paper with the same title beginning but involving clamped SE(T) specimens.


2011 ◽  
Vol 488-489 ◽  
pp. 126-129 ◽  
Author(s):  
W. R. Tyson ◽  
G. Shen ◽  
J. A. Gianetto ◽  
D.Y. Park

CANMET-MTL has developed a low-constraint test designed to reduce unnecessary conservatism in the measurement of toughness for use in the assessment of flaws in pipeline girth welds. The design is based on tension loading using fixed (clamped) grips of a single-edge-notched BxB SE(T) specimen, side-grooved to promote plane-strain conditions. Equations have been developed to derive J-integral, CTOD and crack growth from measurement of load and crack-mouth opening displacement. Loading conditions (essentially distance between the grips) have been chosen to reproduce the crack-tip constraint of a circumferential surface flaw in a pipe in service under tensile or bending loads. In this paper, the development of the test and the principal findings from its use will be described.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Zhoudao Lu

Determination of the residual crack extension resistance curves (KR-curves) associated with cohesive force distribution on fictitious crack zone of complete fracture process is implemented in present research. The cohesive force distributes according to bilinear softening traction-separation law proposed by Petersson. Totally ten temperatures varying from 20°C to 600°C and the specimen size of230×200×200 mm with initial-notch depth ratios 0.4 are considered. The load-crack mouth opening displacement curves (P-CMOD) of postfire specimens are obtained by wedge-splitting method from which the stress intensity factor curves (K-curves) are calculated. In each temperature, with the distribution of cohesive force along the fracture process zone, the residual fracture toughnessKR(Δa) increases with increasing crack lengthΔa, whereas theKR-curves decrease with increasing temperaturesTmfor the thermal damage induced. The stability analysis on crack propagation demonstrates that when the residualKR-curve is higher thanK-curve, the crack propagates steadily; otherwise, the crack propagates unsteadily.


Author(s):  
Guowu Shen ◽  
William R. Tyson ◽  
James A. Gianetto ◽  
Dong-Yeob Park

The effect of side grooves on crack mouth opening displacement (CMOD) compliance, distribution of J-integral and crack-tip constraint parameters Q and A2 along the thickness of a clamped single-edge-notched tension (SE(T)) specimen were studied by finite element analysis (FEA). Focus was on the effect of depth of side grooves on J-integral and constraint parameters Q and A2 for shallow and deep cracks. The 3-D results were compared with those of SE(T) specimens in plane strain. The results show that the effective thickness equation used in ASTM E 1820 to evaluate compliance of side-grooved SE(B) and C(T) specimens can be used for clamped SE(T) specimens with reasonable accuracy. The results also suggest that the depth of the side grooves affects the distribution of the J-integral: the highest J-integral is at the center of the thickness for a SE(T) specimen with side grooves equal to or less than 10% of total thickness, and near the root of the side grooves for side grooves greater than 10% for a deeply-cracked specimen when the applied load P≥PY. The FEA results also show that the depth of side grooves affects the distribution of the constraint parameters: the crack-tip constraint is highest at the center of the thickness for a specimen with 0% side grooves (plain-sided), and near the root of the side grooves for side grooves equal to or greater than 10%. It was also found from FEA that the crack-tip constraint of a SE(T) specimen with 20% side grooves with shallow (a/W = 0.2) or deep (a/W = 0.5) crack is higher than that of a SE(T) specimen with the same crack depth in plane strain. As a result, the J-resistance of a SE(T) specimen with 20% side grooves may be lower than that of the same specimen in plane strain.


1993 ◽  
Vol 66 (4) ◽  
pp. 646-663 ◽  
Author(s):  
Claudia J. Quigley ◽  
Robert Dooley ◽  
David M. Parks

Abstract Cylindrical dumbbell specimens containing deep circumferential cracks were loaded in tension until failure to investigate the fracture process in thick carbon black filled elastomers. Failure occurred at large deformations and was characterized by material tearing and small amounts of slow stable crack extension until rupture. The tearing process itself consisted of two distinct phenomena, delamination and crack extension. Upon load application, parabolic and asymmetric blunting of the crack tip was observed followed by a visible separation of the fabricated crack surfaces into upper and lower crack surfaces connected by an inner core of elastomer material. Localized material failure, identified as delamination, occurred along the outer surface of this inner core between the fabricated crack surfaces. Crack extension in the load direction was found above and below the fabricated crack surfaces. Both qualitative and quantitative aspects of failure were studied. Load and crack mouth opening displacement (CMOD) histories were examined, and the stretch ratio and tearing energy at rupture were measured. Finally, a model describing the tearing process was discussed.


Sign in / Sign up

Export Citation Format

Share Document