Discussion on Fatigue Design Curves for Stainless Steels

Author(s):  
Jussi Solin ◽  
Sven Reese ◽  
Wolfgang Mayinger

The new stainless steel air curve endorsed in NRC RG 1.207 for new US designs only was recently adopted into ASME III without restrictions on applicability. We assume that the new (2009b) ASME curve may be applicable to some grades of stainless steel, but not to all. This paper reports contradictory data for stabilized austenitic stainless steels extending up to 10 million cycles in room temperature at air environment. Niobium and titanium stabilized stainless steel specimens were sampled from 100% relevant material batches fabricated for NPP primary piping. Additional research and more recent data for titanium stabilized steel suggest that our PVP 2009-78138 conclusions are not limited to one material grade. Therefore, the revised ASME design curve cannot be considered universally applicable.

Author(s):  
Xaver Schuler ◽  
Karl-Heinz Herter ◽  
Jürgen Rudolph

Titanium and niobium stabilized austenitic stainless steels X6CrNiTi18-10S (material number 1.4541, correspondent to Alloy 321) respectively X6CrNiNb18-10S (material number 1.4550, correspondent to Alloy 347) are widely applied materials in German nuclear power plant components. Related requirements are defined in Nuclear Safety Standard KTA 3201.1. Fatigue design analysis is based on Nuclear Safety Standard KTA 3201.2. The fatigue design curve for austenitic stainless steels in the current valid edition of KTA 3201.2 is essentially identical with the design curve included in ASME-BPVC III, App I (ed. 2007, add. July 2008 respectively back editions). In the current code revision activities of KTA 3201.2 the compatibility of latest in air fatigue data for austenitic stainless steels with the above mentioned grades were examined in detail. The examinations were based on statistical evaluations of 149 strain controlled test data at room temperature and 129 data at elevated temperatures to derive best-fit mean data curves. Results of two additional load controlled test series (at room temperature and 288°C) in the high cycle regime were used to determine a technical endurance limit at 107 cycles. The related strain amplitudes were determined by consideration of the cyclic stress strain curve. The available fatigue data for the two austenitic materials at room temperature and elevated temperatures showed a clear temperature dependence in the high cycle regime demanding for two different best-fit curves. The correlation of the technical endurance limit(s) at room temperature and elevated temperatures with the ultimate strength of the materials is discussed. Design fatigue curves were derived by application of the well known factors to the best-fit curves. A factor of SN = 12 was applied to load cycles correspondent to the NUREG/CR-6909 approach covering influences of data scatter, surface roughness, size and sequence. In terms of strain respectively stress amplitudes in the high cycle regime, for elevated temperatures (>80°C) a factor of Sσ = 1.79 was applied considering and combining in detail the partial influences of data scatter surface roughness, size and mean stress. For room temperature a factor of Sσ = 1.88 shall be applied. As a result, new design fatigue curves for austenitic stainless steel grades 1.4541 and 1.4550 will be available within the German Nuclear Safety Standard KTA 3201.2. The fatigue design rules for all other austenitic stainless steel grades will be based on the new ASME-BPVC III, App I (ed. 2010) design curve.


Author(s):  
Thomas R. Leax

Technical support is provided for a fatigue curve that could potentially be incorporated into Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code. This fatigue curve conservatively accounts for the effects of light water reactor environments on the fatigue behavior of austenitic stainless steels. This paper presents the data, statistical methods, and basis for the design factors appropriate for Code applications. A discussion of the assumptions and methods used in design curve development is presented.


1983 ◽  
Vol 28 ◽  
Author(s):  
J. Megusar ◽  
A. Chaudhry ◽  
D. Imeson ◽  
N. J. Grant

ABSTRACTPrecipitation kinetics was studied in a rapidly solidified 316 stainless steel containing 0.22% C and 1% Ti. A high density of fine TiC particles was obtained by annealing at 923 to 973 K. An increase in recrystallization temperature and room temperature yield strength was observed as compared with the rapidly solidified 316 stainless steel with a nominal carbon and titanium content. An extension of solid solubility by rapid solidification thus offers a potential for developing precipitation strengthened austenitic stainless steels to improve structural and mechanical stability and likely the irradiation resistance.


Alloy Digest ◽  
2020 ◽  
Vol 69 (10) ◽  

Abstract ATI 310S is a 25Cr-20Ni austenitic stainless steel that is typically used for elevated temperature applications. Owing to its higher chromium and nickel contents the alloy provides comparable corrosion resistance, superior resistance to oxidation, and the retention of a larger fraction of room temperature strength than the common austenitic stainless steels such as Type 304. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1328. Producer or source: ATI.


Alloy Digest ◽  
1990 ◽  
Vol 39 (8) ◽  

Abstract ARMCO NITRONIC 40 Stainless Steel is one of the most versatile austenitic stainless steels with a room-temperature yield strength about twice that of AISI Types 304, 321 and 347. In addition, NITRONIC 40 has remarkably good elevated temperature properties and oxidation resistance. It retains high toughness down to -423 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-327. Producer or source: Armco Advanced Materials Corporation. Originally published as Nitronic 40, May 1976, revised August 1990.


Author(s):  
Joseph A. Ronevich ◽  
Chris San Marchi ◽  
Dorian K. Balch

Austenitic stainless steels are typically used in hydrogen environments due to their resistance to hydrogen embrittlement; however, the behavior of welds is not as well understood and can vary from wrought base materials due to chemical composition differences and the presence of ferrite in the fusion zone of the weld. Applications of welded austenitic stainless steels exposed to hydrogen are not limited to room temperature but also include sub-ambient environments, which can have an additional effect on the degradation. In this study, fracture thresholds were measured of three different austenitic stainless steel welds in the hydrogen-precharged condition. Forged 304L, 316L, and 21Cr-6Ni-9Mn stainless steels were gas tungsten arc welded with 308L filler metal and machined into 3-pt bend bars for fracture testing. Crack growth resistance (J-R) curves were measured of the three welds in the hydrogen-precharged condition at ambient (293 K) and sub-ambient (223 K) temperatures to determine the effects of temperature on fracture threshold. Fracture thresholds were determined using elastic-plastic fracture mechanics through development of J-R curves to determine the stress intensity factor following standard practice for determination of fracture toughness. Fracture threshold tests for the welds revealed significant susceptibility to subcritical cracking when tested in the hydrogen-precharged condition. The 21-6-9/308L and 304L/308L welds exhibited some variability in fracture thresholds that did not appear to trend with temperature, while the 316L/308L weld exhibited a reduction of over 50% in fracture threshold at the lower temperature compared to room temperature. In addition to fracture testing, mini-tensile specimens were extracted from the weld region and tested at 293 K and 223 K in the hydrogen-precharged condition. Hydrogen-precharging slightly increased the yield strength relative to the as-welded condition for all three welds at both temperatures. For all three welds, hydrogen reduced the total elongation by 3–11% at 293 K, whereas reductions in total elongation from 50–64% were observed at 223 K (relative to room temperature without hydrogen). The role of slip planarity on hydrogen-induced degradation of ductility and fracture resistance is discussed as a function of temperature, nickel content, and hydrogen. The fracture surfaces were examined to elucidate the observed differences and similarities in mechanical properties.


Author(s):  
William J. O’Donnell ◽  
William John O’Donnell ◽  
Thomas P. O’Donnell

The current fatigue design curve for austenitic stainless steels in the ASME Boiler and Pressure Vessel Code is known to be unconservative in certain fatigue regimes. This design curve was based on data which included cold worked material, and it allows cyclic stresses which are too high to satisfy code safety margins for annealed materials in these regimes. New fatigue design curves are proposed for air environments based on the existing worldwide database for annealed materials. Because of the differing properties of the range of materials covered by the current fatigue design curves, separate fatigue design curves are also proposed herein for Nickel Based Alloys (Alloy 600 and Alloy 800) in air. In addition, high temperature (> 360°F, 182°C) water has been found to accelerate fatigue crack propagation rates and to have a very deleterious effect on fatigue longevity in the low and intermediate cycle regimes. New fatigue design curves which include high temperature water environmental effects are proposed based on the extensive data developed by investigators worldwide.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


Sign in / Sign up

Export Citation Format

Share Document