Derivation of Design Fatigue Curves for Austenitic Stainless Steel Grades 1.4541 and 1.4550 Within the German Nuclear Safety Standard KTA 3201.2

Author(s):  
Xaver Schuler ◽  
Karl-Heinz Herter ◽  
Jürgen Rudolph

Titanium and niobium stabilized austenitic stainless steels X6CrNiTi18-10S (material number 1.4541, correspondent to Alloy 321) respectively X6CrNiNb18-10S (material number 1.4550, correspondent to Alloy 347) are widely applied materials in German nuclear power plant components. Related requirements are defined in Nuclear Safety Standard KTA 3201.1. Fatigue design analysis is based on Nuclear Safety Standard KTA 3201.2. The fatigue design curve for austenitic stainless steels in the current valid edition of KTA 3201.2 is essentially identical with the design curve included in ASME-BPVC III, App I (ed. 2007, add. July 2008 respectively back editions). In the current code revision activities of KTA 3201.2 the compatibility of latest in air fatigue data for austenitic stainless steels with the above mentioned grades were examined in detail. The examinations were based on statistical evaluations of 149 strain controlled test data at room temperature and 129 data at elevated temperatures to derive best-fit mean data curves. Results of two additional load controlled test series (at room temperature and 288°C) in the high cycle regime were used to determine a technical endurance limit at 107 cycles. The related strain amplitudes were determined by consideration of the cyclic stress strain curve. The available fatigue data for the two austenitic materials at room temperature and elevated temperatures showed a clear temperature dependence in the high cycle regime demanding for two different best-fit curves. The correlation of the technical endurance limit(s) at room temperature and elevated temperatures with the ultimate strength of the materials is discussed. Design fatigue curves were derived by application of the well known factors to the best-fit curves. A factor of SN = 12 was applied to load cycles correspondent to the NUREG/CR-6909 approach covering influences of data scatter, surface roughness, size and sequence. In terms of strain respectively stress amplitudes in the high cycle regime, for elevated temperatures (>80°C) a factor of Sσ = 1.79 was applied considering and combining in detail the partial influences of data scatter surface roughness, size and mean stress. For room temperature a factor of Sσ = 1.88 shall be applied. As a result, new design fatigue curves for austenitic stainless steel grades 1.4541 and 1.4550 will be available within the German Nuclear Safety Standard KTA 3201.2. The fatigue design rules for all other austenitic stainless steel grades will be based on the new ASME-BPVC III, App I (ed. 2010) design curve.

1979 ◽  
Vol 101 (4) ◽  
pp. 292-297 ◽  
Author(s):  
D. R. Diercks

The Jaske and O’Donnell [1] curve-fitting procedure for analyzing fatigue data generated between room temperature and 427° C (800° F) for several pressure vessel alloys is reexamined in the present paper. Substantial improvements over their best-fit curves to the data are found to result from two proposed modifications to their procedure, namely 1) the use of a variable exponent in the Langer equation, and 2) minimization of the sum of the squares of the errors in the logarithms of the cyclic-stress amplitudes rather than in the stress amplitudes directly. Likewise, important differences are observed for the resultant allowable stress-amplitude values for design purposes. In particular, the present analysis permits higher allowable stress amplitudes in the critical low-cycle fatigue-life region for the austenitic stainless steels, alloy 800, and alloy 600. Two best-fit curves and the associated sets of allowable stress amplitudes, corresponding to the inclusion or deletion of load-controlled data, are obtained for alloy 718.


2007 ◽  
Vol 539-543 ◽  
pp. 4891-4896 ◽  
Author(s):  
P. Antoine ◽  
B. Soenen ◽  
Nuri Akdut

Transformation of austenite to martensite during cold rolling operations is widely used to strengthen metastable austenitic stainless steel grades. Static strain aging (SSA) phenomena at low temperature, typically between 200°C and 400°C, can be used for additional increase in yield strength due to the presence of α’-martensite in the cold rolled metastable austenitic stainless steels. Indeed, SSA in austenitic stainless steel affects mainly in α’-martensite. The SSA response of three industrial stainless steel grades was investigated in order to understand the aspects of the aging phenomena at low temperature in metastable austenitic stainless steels. In this study, the optimization of, both, deformation and time-temperature parameters of the static aging treatment permitted an increase in yield strength up to 300 MPa while maintaining an acceptable total elongation in a commercial 301LN steel grade. Deformed metastable austenitic steels containing the “body-centered” α’-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature. Therefore, the carbon redistribution during aging at low temperature is explained in terms of the microstructural changes in austenite and martensite.


2020 ◽  
Vol 854 ◽  
pp. 16-22 ◽  
Author(s):  
Artem D. Davydov ◽  
Olga O. Erokhina ◽  
Sergey Vladimirovich Ryaboshuk ◽  
Pavel Valer'evich Kovalev

Austenitic stainless steels are widely used in industry. Increased requirements for the quality of products from these steel grades, the difficulties associated with the implementation of technological processes, as well as the high cost of steel, determine the necessity to assess probable causes of defects. This article presents an analysis of the influence of main process parameters on the quality of products from the grade 08X18H10T steel. Based on the results of statistical analysis and thermodynamic modeling, it was concluded that the increased content of titanium and nitrogen affects the quality of products, which is caused by the formation of titanium carbonitrides in the process of steel solidification.


Author(s):  
Jussi Solin ◽  
Sven Reese ◽  
Wolfgang Mayinger

The new stainless steel air curve endorsed in NRC RG 1.207 for new US designs only was recently adopted into ASME III without restrictions on applicability. We assume that the new (2009b) ASME curve may be applicable to some grades of stainless steel, but not to all. This paper reports contradictory data for stabilized austenitic stainless steels extending up to 10 million cycles in room temperature at air environment. Niobium and titanium stabilized stainless steel specimens were sampled from 100% relevant material batches fabricated for NPP primary piping. Additional research and more recent data for titanium stabilized steel suggest that our PVP 2009-78138 conclusions are not limited to one material grade. Therefore, the revised ASME design curve cannot be considered universally applicable.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract CarTech 347 is a niobium+tantalum stabilized austenitic stainless steel. Like Type 321 austenitic stainless steel, it has superior intergranular corrosion resistance as compared to typical 18-8 austenitic stainless steels. Since niobium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 should be considered for applications requiring intermittent heating between 425 and 900 °C (800 and 1650 °F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1339. Producer or source: Carpenter Technology Corporation.


Author(s):  
Omesh K. Chopra

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.


Author(s):  
Hiroshi Kanasaki ◽  
Makoto Higuchi ◽  
Seiji Asada ◽  
Munehiro Yasuda ◽  
Takehiko Sera

Fatigue life equations for carbon & low-alloy steels and also austenitic stainless steels are proposed as a function of their tensile strength based on large number of fatigue data tested in air at RT to high temperature. The proposed equations give a very good estimation of fatigue life for the steels of varying tensile strength. These results indicate that the current design fatigue curves may be overly conservative at the tensile strength level of 550 MPa for carbon & low-alloy steels. As for austenitic stainless steels, the proposed fatigue life equation is applicable at room temperature to 430 °C and gives more accurate prediction compared to the previously proposed equation which is not function of temperature and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document