Nuclear Power Plants Issues in IAEA Technical Guidelines on Fluid-Structure Interactions

Author(s):  
Shiro Takahashi ◽  
Kunio Hasegawa ◽  
Tomomichi Nakamura

This paper introduces nuclear power plant issues described in International Atomic Energy Agency (IAEA) technical guidelines on fluid-structure interactions (FSIs). The occurrence of FSIs has been recognized for a long time in industry. It is sometimes difficult to predict the FSI phenomena accurately, however, and FSI vibration and water hammer are concerns for structural design or trouble shooting. There have been many problems caused by FSIs in nuclear power plants. In order to avoid FSI problems for newly designed components, it is important to learn from past FSI events that have occurred at actual plants. Four major types of FSI events that have been publicly disclosed are introduced here and the importance of evaluating reactor internals with respect to flow-induced vibration is noted, if the designs of the reactor internals are for prototypes or the operating conditions are changed. The especially significant internals that are susceptible to flow-induced vibration based on past experience are introduced.

Author(s):  
Fumio Inada ◽  
Tomomichi Nakamura ◽  
Takashi Nishihara ◽  
Shigehiko Kaneko ◽  
Manwoong Kim ◽  
...  

In nuclear power plants, fluid structure interactions (FSI) occurring in component systems can cause excessive forces or stresses to the structures resulting in mechanical damages that may eventually threaten the structural integrity. FSI in the guidelines includes flow-induced vibration, water hammer, and pipewhip. It can also include movement, deformation, or fracture of equipments by tsunami etc. They can be issues of design and maintenance. Authors cannot find complete guidelines to correspond to the FSI phenomena which can be important in the design and maintenance of nuclear power plants. Based on the background, International Atomic Energy Agency (IAEA) has drafted guidelines on FSI. This paper summarizes general description of FSI as well as design and maintenance against FSI.


Environments ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 120
Author(s):  
Luca Albertone ◽  
Massimo Altavilla ◽  
Manuela Marga ◽  
Laura Porzio ◽  
Giuseppe Tozzi ◽  
...  

Arpa Piemonte has been carrying out, for a long time, controls on clearable materials from nuclear power plants to verify compliance with clearance levels set by ISIN (Ispettorato Nazionale per la Sicurezza Nucleare e la Radioprotezione - National Inspectorate for Nuclear Safety and Radiation Protection) in the technical prescriptions attached to the Ministerial Decree decommissioning authorization or into category A source authorization (higher level of associated risk, according to the categorization defined in the Italian Legislative Decree No. 230/95). After the experience undertaken at the “FN” (Fabbricazioni Nucleari) Bosco Marengo nuclear installation, some controls have been conducted at the Trino nuclear power plant “E. Fermi,” “LivaNova” nuclear installation based in Saluggia, and “EUREX” (Enriched Uranium Extraction) nuclear installation, also based in Saluggia, according to modalities that envisage, as a final control, the determination of γ-emitting radionuclides through in situ gamma spectrometry measurements. Clearance levels’ compliance verification should be performed for all radionuclides potentially present, including those that are not easily measurable (DTM, Difficult To Measure). It is therefore necessary to carry out upstream, based on a representative number of samples, those radionuclides’ determination in order to estimate scaling factors (SF), defined through the logarithmic average of the ratios between the i-th DTM radionuclide concentration and the related key nuclide. Specific radiochemistry is used for defining DTMs’ concentrations, such as Fe-55, Ni-59, Ni-63, Sr-90, Pu-238, and Pu-239/Pu-240. As a key nuclide, Co-60 was chosen for the activation products (Fe-55, Ni-59, Ni-63) and Cs-137 for fission products (Sr-90) and plutonium (Pu- 238, Pu-239/Pu-240, and Pu-241). The presence of very low radioactivity concentrations, often below the detection limits, can make it difficult to determine the related scaling factors. In this work, the results obtained and measurements’ acceptability criteria are presented, defined with ISIN, that can be used for confirming or excluding a radionuclide presence in the process of verifying clearance levels’ compliance. They are also exposed to evaluations regarding samples’ representativeness chosen for scaling factors’ assessment.


Author(s):  
Se-Youl Won ◽  
Kyeong-Soo Lee ◽  
Jae-Gon Lee

According to Post Fukushima action items in Korea, KHNP has established the integrated aging management system to reinforce aging management of system, structures, and components (SSCs) effectively for seven operating units, which are in service for more than twenty years, and for Kori Unit 1 and Wolsung Unit 1, which are subject to continued operation (CO) based on NUREG-1801 GALL report. KHNP’s integrated aging management programs (AMPs) focus on the establishment of aging management system for long-lived operation of nuclear power plants in Korea. The integrated aging management system consists of the integrated AMP standard guideline, operating guideline for each plant, individual AMPs of each plant, and AMP Data Base (DB) system including implementation results, basic DB information related to facilities operating in NPPs, and operating information such as operating experience and evaluation report. The integrated aging management system is importantly utilized for Periodic Safety Review (PSR) and the renewal of CO. Therefore, it will be largely contributed to keep NPPs the level of safety for long time operation through the effective aging management.


Author(s):  
Xin Xia ◽  
Hua Du ◽  
Ning Li ◽  
Bin Xu ◽  
Yan Li ◽  
...  

The position of the reactor pressure vessel’s instrumentation penetration is the most important factor that influences the none-alignment between the instrumentation penetration and the instrumentation tube of reactor internals. The more the none-alignment, the more wear the flux thimble will suffer, which will damage the flux detector and cause economic losses. This paper analyzes the none-alignment between the instrumentation penetration and the instrumentation tube, and combines the feedback of the experience in nuclear power plants having been built or being build, puts forward the reasonable design value for the instrumentation penetration’s position.


Author(s):  
Koushik A. Manjunatha ◽  
Andrea Mack ◽  
Vivek Agarwal ◽  
David Koester ◽  
Douglas Adams

Abstract The current aging management plans of passive structures in nuclear power plants (NPPs) are based on preventative maintenance strategies. These strategies involve periodic, manual inspection of passive structures using nondestructive examination (NDE) techniques. This manual approach is prone to errors and contributes to high operation and maintenance costs, making it cost prohibitive. To address these concerns, a transition from the current preventive maintenance strategy to a condition-based maintenance strategy is needed. The research presented in this paper develops a condition-based maintenance capability to detect corrosion in secondary piping structures in NPPs. To achieve this, a data-driven methodology is developed and validated for detecting surrogate corrosion processes in piping structures. A scaled-down experimental test bed is developed to evaluate the corrosion process in secondary piping in NPPs. The experimental test bed is instrumented with tri-axial accelerometers. The data collected under different operating conditions is processed using the Hilbert-Huang Transformation. Distributional features of phase information among the accelerometers were used as features in support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) logistic regression methodologies to detect changes in the pipe condition from its baseline state. SVM classification accuracy averaged 99% for all models. LASSO classification accuracy averaged 99% for all models using the accelerometer data from the X-direction.


2020 ◽  
Vol 13 (2) ◽  
pp. 157-168
Author(s):  
Aslan Khuseinovich Abashidze ◽  
Vladimir Mikhailovich Filippov ◽  
Alexander Mikhailovich Solntsev

Abstract States have sovereign rights that allow them to construct nuclear power plants. Moreover, engaging with nuclear power generation makes possible the achievement of the Sustainable Development Goals (2016–30) in combatting climate change, paramount to the Paris Agreement’s initiatives. In the same vein, however, constructing and operating power plants pose strict dangers to both general safety of the public and to national security. Thus, plant operations should strictly abide by the International Atomic Energy Agency (IAEA) standards and international law. As a result, it is important to consider the potential transboundary impacts of nuclear power plants and to conduct an appropriate transboundary environmental impact assessment (EIA). The article examines the construction of the Ostrovets Nuclear Power Plant by Belarus, close to the border of the Republic of Lithuania. The question in focus, however, is as follows: what international procedure can be used to coordinate issues of potentially negative transboundary impacts? Lithuania, in order to avoid the operation of the nuclear power plant, thus sought peaceful settlement of the dispute making use of the dispute resolution mechanisms based on international environmental agreements. The authors of this study show that the treaty bodies, established on the basis of international environmental agreements, provide important assistance in this matter in coordination with the IAEA. The use of these quasi-judicial means of resolving interstate disputes proves effective in pursuing a compromise between economic development and environmental protection. In the absence of such mechanisms at a universal level, one should consider utilizing such mechanisms in other regions of the world.


2021 ◽  
Vol 20 ◽  
pp. 96-105
Author(s):  
V. S. Havrylenko ◽  
◽  
I. V. Kutsyna ◽  
D. I. Кhvalin ◽  
◽  
...  

The year 2020 has become a real challenge for almost all aspects of life all over the world. Under these conditions, Ukrainian science, which has been in a state of crisis for more than a year, has been forced to overcome additional difficulties. However, due to the efforts of scientists, scientific work not only did not stop, but also received a large development effort in new directions and formats. In 2020, the Institute for Safety Problems of Nuclear Power Plants was one of the scientific institutions that under the new conditions made every effort to carry out the planned scientific researches and perform works in accordance with its activities. The main results of scientific and scientific-organizational activities of the Institute for Safety Problems of Nuclear Power Plants in 2020 are presented in the article. Despite the difficult economic situation due to the epidemic, the staff of the Institute obtained important results in studies of nuclear and radiation safety of the Shelter object, and in works aimed at improving the reliability and safety of existing Ukrainian and foreign nuclear power plants. The results of works in the field of the Shelter object transformation into an ecologically safe system, safe operation of nuclear facilities, decommissioning of nuclear facilities, spent nuclear fuel and radioactive waste management are presented in the article. The results of the work performed under the International Atomic Energy Agency (IAEA) grant and the Ukrainian-Japanese Science and Technology Research Partnership for Sustainable Development (SATREPS) project are described. The implementation of the results of these studies in practice is indicated. Scientific and expert activities in the interests and at the request of public authorities, cooperation with national and foreign scientific organizations as well as scientific and organizational activities in 2020 are described. Information on internal certification of employees, participation in international and national events, publishing and etc. is presented.


2021 ◽  
Author(s):  
A. Protasov ◽  
◽  
A. Sylaieva ◽  
T. Novoselova ◽  
I. Morozovskaya ◽  
...  

Based on many years of research experience of water techno-ecosystems of thermal and nuclear power plants a brief review of the main patterns of formation of the composition, cenotic structure, elements of the functional organization of benthos and periphyton communities was made. It was shown that the composition of zoobenthos and zooperiphyton in some cooling ponds, other technical water bodies and watercourses was quite rich. In addition, due to the rather intensive invasive process, the list of taxa is constantly expanding. Species of tropical and subtropical origin have been recorded. Of particular importance is the invasion of species that may be the cause of bio-hindrances in the operation of power plant equipment. Techno-ecosystems have been studied to varying degrees. One of the most studied for a long time are the cooling ponds of Khmelnitsky and Chernobyl nuclear power plants. Hydrobiological research and monitoring at the first one has been carried out for more than 20 years. It was found that the influence of biotic invasion (invasion of Dreissenidae) may have a significant impact, comparable to extreme technogenic factors, on both the ecosystem and technical water supply facilities. The stages of contourisation and decontourisation processes in the Khmelnitsky NPP techno-ecosystem were established. At the Chernobyl NPP cooling pond, studies were carried out during all periods of the existence of the reservoir and the power plant, until the process of uncontrolled pond descent and transforming it into a unique wetland. Based on the obtained data, practical recommendations relating to the organization of hydrobiological and environmental monitoring, as well as reducing biological hindrances and improving the reliability of power plant equipment have been developed.


2003 ◽  
Author(s):  
J. Guillou ◽  
L. Paulhiac

Several vibration-induced failures at the root of small bore piping systems occurred in French nuclear power plants in past years. The evaluation of the failure risk of the small bore pipes requires a fair estimation of the bending stress under operating conditions. As the use of strain gauges is too time-consuming in the environmental conditions of nuclear power plants, on-site acceleration measurements combined with numerical models are easier to handle. It still requires yet a large amount of updating work to estimate the stress in multi-span pipes with elbows and supports. The aim of the present study is to propose an alternate approach using two accelerometers to measure the local nozzle deflection, and an analytical expression of the bending stiffness of the nozzle on the main pipe. A first formulation is based on a static deformation assumption, thus allowing the use of a simple analog converter to get an estimation of the RMS value of the bending stress. To get more accurate results, a second method is based on an Euler Bernoulli deformation assumption: a spectral analyzer is then required to get an estimation of the spectrum of the bending stress. A better estimation of its RMS value is then obtained. An experimental validation of the methods based on strain gauges has been successfully performed.


Sign in / Sign up

Export Citation Format

Share Document