Creep Crack Growth Predictions in 316H Steel Over a Wide Range of Stresses and Temperatures

Author(s):  
A. Mehmanparast ◽  
C. M. Davies ◽  
K. M. Nikbin ◽  
G. A. Webster

The prediction of the creep crack growth (CCG) behaviour in engineering materials is of great importance in the life assessment of power plant components. The conventional technique to predict CCG is to employ uniaxial creep properties and appropriate damage models in finite element (FE) simulations or analytical CCG prediction models. Uniaxial creep trends for Type 316H SS have been recently estimated for a wide range of stresses and temperatures in [1] and FE CCG predictions have been made at 550 °C and validated through comparison with the experimental data. In this paper, FE CCG predictions using the developed uniaxial creep trends for a wide range of stresses and temperatures are presented and the results are compared with the predicted CCG trend at 550 °C and also with the analytical constant creep ductility NSW CCG prediction models. The results from FE predictions are discussed in terms of the temperature effects on the creep deformation and crack growth behaviour of components operating at elevated temperatures.

2005 ◽  
Vol 297-300 ◽  
pp. 397-402
Author(s):  
Je Chang Ha ◽  
Joon Hyun Lee ◽  
Masaaki Tabuchi ◽  
A.Toshimitsu Yokobori Jr.

Most heat resisting materials in structural components are used under multi-axial stress conditions and under such conditions ductile materials often exhibit brittle manner and low creep ductility at elevated temperature. Creep crack initiation and growth properties are also affected by multi-axial stress and it is important to evaluate these effects when laboratory data are applied to structural components. Creep crack growth tests using circumferential notched round bar specimens are a simple method to investigate multi-axial stress effects without using complicated test facilities. Creep crack growth tests have been performed using a 12CrWCoB turbine rotor steel. In order to investigate the effects of multi-axial stress on creep crack growth properties, the tests were conducted for various notch depths at 650°C. The circumferential notched round bar specimen showed brittle crack growth behaviour under multi-axial stress conditions. Creep crack growth rate was characterized in terms of the C* parameter. A 12CrWCoB turbine rotor steel has been tested using circumferential notched round bar specimens with different multi-axiality. Circumferential notched round bar specimens show increased brittle creep crack growth behaviour due to the multi-axial stress condition. Creep crack growth properties could be predicted by allowing for the decrease of creep ductility under multi-axial conditions.


Author(s):  
S. Maleki ◽  
A. Mehmanparast ◽  
K. M. Nikbin

Practical time frames in newly developed steels, and technical and financial restrictions in test durations means that extrapolation of short-term laboratory test results to predict long-term high temperature service component failure is an area of concern when conducting a fitness for service or remaining life assessment. Recent literature presenting uniaxial creep and crack growth tests indicate that some materials show lower failure strains during longer term laboratory tests. The constraint based remaining failure ductility based NSW model crack prediction model has been shown to be capable of predicting upper/lower bounds of creep crack growth in a range of steels when data are obtained from relatively short to medium-term laboratory experiments (< 10,000 hours). This paper compares and analyses the response of the NSW model to predict long term creep crack propagation rates using a wide database of modified 9Cr material over s range of temperatures. The paper employs extrapolation methods of available uniaxial data to make viable conservative predictions of crack growth at high temperatures where at present no data is available.


Author(s):  
A. Mehmanparast ◽  
C. M. Davies ◽  
D. W. Dean ◽  
K. M. Nikbin

Pre-compression (PC) is found to have strong effects on the tensile, uniaxial creep rupture and creep crack growth (CCG) behaviour of type 316H stainless steel at 550 °C. In this work, blocks of 316H steel have been pre-compressed to 8% plastic strain at room temperature and compact tension, C(T), specimens are extracted from the pre-strained blocks with loading directions parallel and normal to the PC axis. The influence of specimen orientation and thickness on the CCG behaviour of the PC material is examined. The results are compared to short term and long term CCG behaviour of 316H steel at the same temperature. Higher CCG rates and shorter CCI times have been found in PC material with a loading direction normal to the PC axis compared to that parallel to the PC axis. These observations are discussed with respect to the microstructural effects.


Author(s):  
A. Mehmanparast ◽  
S. Maleki ◽  
M. Yatomi ◽  
K. M. Nikbin

The influence of specimen size and geometry on the creep crack growth (CCG) behaviour of P91 parent and weld materials at 600–625 °C has been examined. CCG tests have been performed on compact tension, C(T), specimens with an initial crack located in the heat affected zone (HAZ). Further tests have also been performed on specimens made of parent material (PM). Higher creep crack growth rates have been found in the HAZ material compared to the PM when the CCG rate is characterized using the C* fracture mechanics parameter. The experimental data from these tests are compared to those of available from specimens with different size and geometries. The results are discussed in terms of specimen geometry and constraint effects on the CCG behaviour of P91 weldments at elevated temperatures.


2007 ◽  
Vol 348-349 ◽  
pp. 709-712
Author(s):  
Kamran M. Nikbin

Modelling of Creep Crack Growth (CCG) using analytical and numerical methods is relevant to life assessment procedures of components operating at elevated temperatures. This paper compares an analytical crack prediction and a numerical based virtual CCG technique used in fracture mechanics components with sample experimental results. Two approaches are presented. First the well developed strain exhaustion model called the NSW and the modified NSW-MOD models which predict plane stress/strain bound crack initiation and growth rates for engineering alloys and the second a damage-based approach used to numerically predict the crack propagation rate in Finite Element models of fracture mechanics specimens. The results from both methods are correlated against an independently determined C* parameter. As an example the NSW and the extended NSW-MOD strain exhaustion models are applied to compare to the experimental data and FE predictions for two steels at Carbon-Manganese steel tested at 360 oC and a weld 316H stainless steel at 550 oC. For values of C* within the limits of the present creep crack growth data presented the plane strain crack growth rate predicted from the numerical analysis is found to be less conservative than the plane strain NSW model but more conservative than plane strain NSW-MOD model.


1986 ◽  
Vol 108 (2) ◽  
pp. 186-191 ◽  
Author(s):  
K. M. Nikbin ◽  
D. J. Smith ◽  
G. A. Webster

This paper is concerned with assessing the integrity of cracked engineering components which operate at elevated temperatures. Fracture mechanics parameters are discussed for describing creep crack growth. A model is presented for expressing growth rate in terms of creep damage accumulation in a process zone ahead of the crack tip. Correlations are made with a broad range of materials exhibiting a wide spread of creep ductilities. It is found that individual propagation rates can be predicted with reasonable accuracy from a knowledge only of the material uni-axial creep ductility. An engineering creep crack growth assessment diagram is proposed which is independent of material properties but which is sensitive to the state of stress at the crack tip. Approximate bounds are presented for plane stress and plane strain situations and it is shown that crack growth rates about fifty times faster are expected under plane strain conditions than when plane stress prevails.


Author(s):  
Ali N. Mehmanparast ◽  
Catrin M. Davies ◽  
Mahmoud Ardakani ◽  
Kamran M. Nikbin

Compressive plastic pre-strain induced at room temperature in type 316H stainless steel, significantly influences the tensile, creep deformation and crack growth behaviour of the material. It is known that the material is hardened after pre-strain to 8% plastic strain and thus exhibits little or no plasticity during loading of uniaxial or creep crack growth (CCG) tests. In addition pre-compression (PC) has been found to reduce the creep rupture time, creep ductility and accelerate creep crack growth rates compared to as-received (AR) (i.e. uncompressed) material. In order to understand pre-straining effects on mechanical behaviour of 316H, optical and scanning electron microscopy (SEM) studies have been performed on uncompressed and 8% pre-compressed material. Samples have been examined in three orientations (i.e. parallel and perpendicular to the pre-compression direction). Furthermore, the influence of cold pre-compression on local creep damage formation ahead of the crack tip on interrupted CCG tests on AR and PC material has been studied. The results are discussed in terms of intergranular and transgranular damage caused by the compression process and the importance of microstructural changes on the mechanical behaviour of the material in long term tests.


Author(s):  
Nicola Bonora ◽  
Luca Esposito ◽  
Simone Dichiaro ◽  
Paolo Folgarait

Safe and accurate methods to predict creep crack growth (CCG) are required in order to assess the reliability of power generation plants components. With advances in finite element (FE) methods, more complex models incorporating damage can be applied in the study of CCG where simple analytical solutions or approximate methods are no longer applicable. The possibility to accurately simulate CCG depends not only on the damage formulation but also on the creep model since stress relaxation, occurring in the near tip region, controls the resulting creep rate and, therefore, crack initiation and growth. In this perspective, primary and tertiary creep regimes, usually neglected in simplified creep models, plays a relevant role and need to be taken into account. In this paper, an advanced multiaxial creep model [1], which incorporates damage effects, has been used to predict CCG in P91 high chromium steel. The model parameters have been determined based on uniaxial and multiaxial (round notched bar) creep data over a wide range of stress and temperature. Successively, the creep crack growth in standard compact tension sample was predicted and compared with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document