scholarly journals Probabilistic Assessment of Innovative Mitigating Measures for Buried Steel Pipeline–Fault Crossing

Author(s):  
Vasileios E. Melissianos ◽  
Dimitrios Vamvatsikos ◽  
Charis J. Gantes

A methodology is presented on assessing the effectiveness of flexible joints in mitigating the consequences of faulting on buried steel pipelines through a comprehensive analysis that incorporates the uncertainty of fault displacement magnitude and the response of the pipeline itself. The proposed methodology is a two-step process. In the first step the probabilistic nature of the fault displacement magnitude is evaluated by applying the Probabilistic Fault Displacement Hazard Analysis, considering also all pertinent uncertainties. The second step is the “transition” from seismological data to the pipeline structural response through the fault displacement components as the adopted vector intensity measure. To mitigate the consequences of faulting on pipelines, flexible joints between pipeline parts are proposed as innovative measure for reducing the deformation of pipeline walls. Thus, the mechanical behavior of continuous pipelines and pipelines with flexible joints is numerically assessed and strains are extracted in order to develop the corresponding strain hazard curves. The latter are a useful engineering tool for pipeline – fault crossing risk assessment and for the effectiveness evaluation of flexible joints as innovative mitigating measures against the consequences of faulting on pipelines.

2017 ◽  
Vol 33 (1) ◽  
pp. 201-218 ◽  
Author(s):  
Vasileios E. Melissianos ◽  
Dimitrios Vamvatsikos ◽  
Charis J. Gantes

A methodology for seismic performance assessment of onshore buried steel pipelines at fault crossings is presented. Probabilistic fault displacement hazard analysis is performed at first to determine the magnitude of the three fault displacement components in space. Next, three-dimensional (3-D) structural analysis of the pipeline via a nonlinear beam-type finite element model allows accounting for the different effect of imposed displacements in each axis. Finally, convolving of seismic hazard and structural response results in joint hazard surfaces of compressive and tensile strains that can be used to estimate the mean annual rate of exceeding any limit-state of interest under the influence of demand and capacity uncertainty.


2013 ◽  
Vol 13 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Makoto TAKAO ◽  
Jiro TSUCHIYAMA ◽  
Tadashi ANNAKA ◽  
Tetsushi KURITA

Author(s):  
A. K. Ghosh ◽  
H. S. Kushwaha

The various uncertainties and randomness associated with the occurrence of earthquakes and the consequences of their effects on the NPP components and structures call for a probabilistic seismic risk assessment (PSRA). However, traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to be computed for PGA only. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for Kakrapar Atomic Power Station site. Sensitivity of the results to the changes in various parameters has also been presented. These results determine the seismic hazard at the given site and the associated uncertainties. The paper also presents some results of the seismic fragility for an existing containment structure. The various parameters that could affect the seismic structural response include material strength of concrete, structural damping available within the structure and the normalized ground motion response spectral shape. Based on this limited case study the seismic fragility of the structure is developed. The results are presented as families of conditional probability curves plotted against the peak ground acceleration (PGA). The procedure adopted incorporates the various randomness and uncertainty associated with the parameters under consideration.


2021 ◽  
Author(s):  
Mohamadreza Hosseyni ◽  
Habib Rahimi

Abstract. The probabilistic fault displacement hazard analysis is one of the new methods in estimating the amount of possible displacement in the area at the hazard of causal fault rupture. In this study, using the probabilistic approach and earthquake method introduced by Youngs et al., 2003, the surface displacement of the North Tabriz fault has been investigated, and the possible displacement in different scenarios has been estimated. By considering the strike-slip mechanism of the North Tabriz fault and using the earthquake method, the probability of displacement due to surface ruptures caused by 1721 and 1780 North Tabriz fault earthquakes has been explored. These events were associated with 50 and 60 km of surface rupture, respectively. The 50–60 km long section of the North Tabriz fault was selected as the source of possible surface rupture. We considered two scenarios according to possible displacements, return periods, and magnitudes which are reported in paleoseismic studies of the North Tabriz fault. As the first scenario, possible displacement, return period, and magnitude was selected between zero to 4.5; 645 years and Mw~7.7, respectively. In the second scenario, possible displacement, return period and magnitude were selected between zero to 7.1, 300 years, and Mw~7.3, respectively. For both mentioned scenarios, the probabilistic displacements for the rate of exceedance 5 % in 50, 475, and 2475 years for the principle possible displacements (on fault) of the North Tabriz fault have been estimated. For the first and second scenarios, the maximum probabilistic displacement of the North Tabriz fault at a rate of 5 % in 50 years is estimated to be 186 and 230 cm. Also, mentioned displacements for 5 % exceedance in 475 years and 2475 years in both return periods of 645 and 300 years, are estimated at 469 and 655 cm.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 398-414
Author(s):  
Katsuichiro Goda

Surface fault displacement due to an earthquake affects buildings and infrastructure in the near-fault area significantly. Although approaches for probabilistic fault displacement hazard analysis have been developed and applied in practice, there are several limitations that prevent fault displacement hazard assessments for multiple locations simultaneously in a physically consistent manner. This study proposes an alternative approach that is based on stochastic source modelling and fault displacement analysis using Okada equations. The proposed method evaluates the fault displacement hazard potential due to a fault rupture. The developed method is applied to the 1999 Hector Mine earthquake from a retrospective perspective. The stochastic-source-based fault displacement hazard analysis method successfully identifies multiple source models that predict fault displacements in close agreement with observed GPS displacement vectors and displacement offsets along the fault trace. The case study for the 1999 Hector Mine earthquake demonstrates that the proposed stochastic-source-based method is a viable option in conducting probabilistic fault displacement hazard analysis.


Sign in / Sign up

Export Citation Format

Share Document