Correlation of Fracture Toughness With Charpy Impact Energy for Low Alloy, Structural Steel Welds

Author(s):  
Kleber E. Bianchi ◽  
Vitor Scarabeli Barbosa ◽  
Rafael Savioli ◽  
Paulo Eduardo Alves Fernandes ◽  
Claudio Ruggieri

Correlations between Charpy impact energy and fracture toughness values have continuously been developed because of their applicability in structural integrity assessment methodologies. This also applies to the integrity analysis of welded joints, which represent material discontinuities and potential failure locus in structures. Therefore, in effective FFS methodology applications, the fracture toughness of welded joints located in critical regions should be accurately estimated. This work addresses an estimation procedure of fracture toughness values based on Charpy impact energy for low alloy, steel welds made from an ASTM A572 Gr 50 base plate material. To produce the welded joints, two processes were used: SMAW and FCAW. To ensure valid toughness test values corresponding to high constraint conditions, a strength overmatched, deeply-cracked SE(B) configuration having a weld centerline notch was adopted. The ductile-to-brittle transition curve was established by means of Charpy tests. Direct CVN correlations with fracture toughness, as well as reference temperature based correlations derived from the Master Curve approach, were evaluated. The obtained results indicate that both correlation procedures are suitable for weld metal toughness estimations based on Charpy data. However, slightly different values of correlation constants than those indicated for the base metal should be employed in the case of the reference temperature method.

2021 ◽  
Vol 113 ◽  
pp. 102934
Author(s):  
Vitor S. Barbosa ◽  
Lucas A.C. de Godois ◽  
Kleber E. Bianchi ◽  
Claudio Ruggieri

Author(s):  
Kleber Eduardo Bianchi ◽  
Vitor Scarabeli Barbosa ◽  
Paulo Fernandes ◽  
Claudio Ruggieri

1977 ◽  
Vol 99 (3) ◽  
pp. 419-426
Author(s):  
R. R. Seeley ◽  
W. A. Van Der Sluys ◽  
A. L. Lowe

Large bolts manufactured from SA540 Grades B23 and B24 are used on nuclear reactor vessels and require certain minimum mechanical properties. A minimum fracture toughness of 125 ksi in. (137 MPa m) at maximum operating stresses is required by the Nuclear Regulatory Commission for these bolts. This minimum toughness property was determined by a stress analysis of a bolt. Minimum required Charpy impact properties were calculated by a fracture toughness-Charpy impact energy correlation and the minimum calculated fracture toughness. The fracture toughness, yield strength and Charpy V notch impact properties were determined for five commercial heats of SA540 steels. Correlations between the fracture toughness and Charpy impact properties of these materials were evaluated. The toughness-impact energy correlation used to set the minimum required Charpy impact properties was found to be unduly conservative, and a different correlation of these properties is suggested. The SA540 steels investigated exhibited fracture toughness properties in excess of the NRC minimum requirements.


2013 ◽  
Vol 32 (2) ◽  
pp. 163-169
Author(s):  
Josip Brnic ◽  
Goran Turkalj ◽  
Sanjin Krscanski

AbstractThis paper presents and analyzes the responses of non-alloy structural steel (1.0044) subjected to uniaxial stresses at high temperatures. This research has two important determinants. The first one is determination of stress-strain dependence and the second is monitoring the behavior of materials subjected to a constant stress at constant temperature over time. Experimental results refer to mechanical properties, elastic modulus, total elongations, creep resistance and Charpy V-notch impact energy. Experimental results show that the tensile strength and yield strength of the considered material fall when the temperature rises over 523 K. Significant decrease in value is especially noticeable when the temperature rises over 723 K. In addition, engineering assessment of fracture toughness was made on the basis of Charpy impact energy. It is visible that when temperature raises then impact energy increases very slightly.


Author(s):  
Jin Ho Lee ◽  
Ji Hoon Kim ◽  
Myung Hyun Kim

Abstract Engineering critical assessment (ECA) is a procedure for evaluating the soundness of structures with flaws and has been widely applied for assessing the structural integrity. ECA procedure requires reliable fracture toughness data to assess the effect of defects. Ideal data are typically obtained from samples taken during construction of an engineering structure or from the structure afterward, but there are cases in which removal of the test samples is impossible due to the continued operation of the structure. To this end, Appendix J of the BS 7910 provides a procedure for estimating fracture toughness values from appropriate Charpy impact test data. However, the correlation between Charpy impact energy and fracture toughness is known to be overly conservative with not sufficient theoretical background in fracture mechanics perspective. In this regard, the revised BS 7910:2019 provides an improved method for calculating the reference temperature by applying the yield strength and the Charpy upper shelf energy based on empirical data. The target of this study is to validate the master curve approach in the modified BS 7910 for two common offshore grade steels with explicit considerations for various groove shapes, heat inputs and welding processes. For the purpose, the master curves are compared in terms of the reference temperature calculated from Charpy impact test according to BS 7910:2013 and the newly revised 2019 version of BS 7910. The modified master curve resulted in less conservative fracture toughness values anticipated from the decreased reference temperature. The estimated fracture toughness values exhibited a good correlation with experimentally obtained toughness values. The influence of various groove shapes, heat inputs and welding processes in estimating fracture toughness based on the master curve approach is discussed. In addition, the effect of impact test sample locations within weld metals toward estimated fracture toughness values is evaluated.


Author(s):  
Kentaro Yoshimoto ◽  
Takatoshi Hirota ◽  
Hiroyuki Sakamoto

Surveillance tests have been conducted on Japanese Pressurized Water Reactor (PWR) plants for more than 40 years to monitor irradiation embrittlement of reactor pressure vessel (RPV) beltline materials. Fracture toughness specimens are contained as well as tensile and Charpy impact specimens in a surveillance capsule and utilized for structural integrity evaluation. Therefore, a lot of fracture toughness data have been obtained by fracture toughness tests using such as Compact Tension (CT) and Wedge Opening Loading (WOL) specimens. More than one thousand data have been accumulated for both unirradiated and irradiated materials until 2013. Additionally, in terms of fracture toughness, Master Curve (MC) concept has been widely used for fracture toughness transition curve expression of ferritic steels. Considering such a situation, the new fracture toughness curves using Tr30, which denotes Charpy V-notch 30ft-lb transition temperature, as an indexing parameter were developed based on MC concept depending on product form for Japanese RPV steels in 2014. In this study, applicability of the newly developed curves of Japanese RPV steels to structural integrity evaluation is investigated. Especially, this paper focused on conservatism of the curves and the adequate margin to be added in evaluation of RPV integrity employing statistical methodology.


Author(s):  
Michael J. Rosenfeld

The importance of Charpy V-notch testing of pipe has been well established in the pipeline industry. Until now, it has been necessary to perform a number of tests in order to develop the toughness transition curve. A method is described which makes possible forecasting the full-scale toughness transition from a single subsize test datum to an acceptable degree of accuracy. This is potentially useful where historical test results or material samples available for testing are limited in quantity. Worked examples illustrating the use of the relationships are given.


Sign in / Sign up

Export Citation Format

Share Document