Development of New Design Fatigue Curves in Japan: Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates

Author(s):  
Masahiro Takanashi ◽  
Hiroshi Ueda ◽  
Toshiyuki Saito ◽  
Takuya Ogawa ◽  
Kentaro Hayashi

In Japan, the Design Fatigue Curve (DFC) Phase 1 and Phase 2 subcommittees were organized under the Atomic Energy Research Committee in the Japan Welding Engineering Society and have proposed new design fatigue curves for carbon, low-alloy, and austenitic stainless steels. To confirm the validity of the proposed design fatigue curves, a Japanese utility collaborative project was launched. In this project, fatigue tests were conducted on large-scale and small-sized specimens, and the test data were provided to the DFC Phase 2 subcommittee. This paper discusses the best-fit curves proposed by the DFC Phase 1 subcommittee, focusing on the results of large-scale fatigue tests for carbon steel and low-alloy steel plates. The fatigue test results for large-scale specimens were compared with the best-fit curve proposed by the DFC Phase 1 subcommittee. This comparison revealed that the fatigue lives given by the proposed curves correspond to those of approximately 1.5–4.0-mm-deep crack initiation in large-scale specimens. In this program, fatigue tests with a mean strain were also carried out on large-scale specimens. These tests found that the fatigue lives were almost equivalent to those of approximately 4.4–7.0-mm-deep crack initiation in large-scale specimens. In determining a design fatigue curve, strain-controlled tests are usually performed on small-sized specimens, and the fatigue life is then defined by the 25% load drop. It is reported that the cracks reach nearly 3–4-mm depth under those 25% drop cycles. The test results confirm that the fatigue lives of large-scale specimens agree with those given by the best-fit curve for carbon and low-alloy steels, and no remarkable size effects exist for the crack depths compared in this study.

Author(s):  
Masahiro Takanashi ◽  
Hiroshi Ueda ◽  
Toshiyuki Saito ◽  
Takuya Ogawa ◽  
Kentaro Hayashi

Abstract In Japan, the Design Fatigue Curve (DFC) Phase 1 and Phase 2 subcommittees, which are a part of the Atomic Energy Research Committee of the Japan Welding Engineering Society, have proposed new design fatigue curves and fatigue analysis methods for carbon, low-alloy, and austenitic stainless steels. To confirm the validity of the proposed design fatigue curves, a Japanese utility collaborative project was launched, and the authors conducted fully reversed four-point bending fatigue tests for large-scale specimens of carbon steel and low-alloy steel plates. Subsequently, in a previous paper (PVP2018-84456), the authors reported that the fatigue lives determined by the best-fit curve proposed by the DFC subcommittee corresponded to those of approximately 1.5–7.0-mm-deep crack initiation in large-scale specimens. In this study, the fatigue crack initiation and propagation behavior observed in large-scale specimens was investigated by using a plastic replica and beach mark method. Similar to the case of small-sized specimens, in the large-scale specimens, multiple fatigue cracks initiated at an early stage of testing, and propagated with coalescence to penetrate the specimen width. However, no fatigue cracks were detected at the design fatigue life. Approximately 100-μm-long cracks were observed, albeit only after the specimen was subjected to a number of cycles that corresponded to approximately 3.5 times the design fatigue life. According to NUREG/CR-6909 Rev.1, the crack depths in small-sized round bar specimens at the fatigue lives, which are defined by 25%-stress-drop cycles, are reported to be approximately 3 mm. The results of the large-scale tests indicated that regardless of the specimen size, nearly the same phenomenon occurred on the specimen surface until approximately 3–4-mm-deep crack initiated. The size effect was mainly caused by the stress gradient. The finite element analysis indicated that the stress gradient in the large-scale specimen was gentle owing to the large thickness of the specimen, and the stress in the vicinity of the surface was considered to be uniform. In conclusion, the size effect was not apparent. As the same conclusion can be applied to considerably larger actual components, designers do not need to consider the size effect when designing pressure vessels or piping by using the design fatigue curve determined based on small-sized specimens.


2019 ◽  
Author(s):  
Nils Madenach ◽  
Cintia Carbajal Henken ◽  
René Preusker ◽  
Odran Sourdeval ◽  
Jürgen Fischer

Abstract. 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data is analyzed to identify possible changes of the cloud vertical distribution over the Tropical Atlantic Ocean (TAO). For the analysis multiple linear regression techniques are used. Within the investigated period, no significant trend in the domain-averaged cloud vertical distribution was found. In terms of linear changes, two major phases (before and after November 2011) in the time-series of the TAO domain-average Cloud Top Height (CTH) and High Cloud Fraction (HCF) can be distinguished. While phase 1 is dominated by a significant linear increase, phase 2 is characterized by a strong, significant linear decrease. The observed trends were mainly caused by the El Niño Southern Oscillation (ENSO). The increase in CTH and HCF in phase 1, was attributed to the transition from El Niño (2002) to La Niña (2011) conditions. The strong decrease in phase 2, was caused by the opposite transition from a La Niña (2011) to a major El Niño event (2016). A comparison with the large scale vertical motion ω at 500 hPa obtained from ERA-Interim ECMWF Re-Analyses and the Nino3.4-Index indicates that the changes in HCF are induced by ENSO linked changes in the large scale vertical upward movements over regions with strong large scale ascent. A first comparison with the DARDAR data set, which combines CloudSat radar and CALIPSO lidar measurements, shows qualitatively good agreements for the interannual variability of the high cloud amount and its linear decrease in phase 2.


Author(s):  
Masaru Bodai ◽  
Yuichi Fukuta ◽  
Seiji Asada ◽  
Kentaro Hayashi

Abstract In order to develop new design fatigue curves for carbon steels & low alloy steels and austenitic stainless steels and a new design fatigue evaluation method that are rational and have clear design basis, Design Fatigue Curve (DFC) Phase 1 subcommittee and Phase 2 subcommittee were established in the Atomic Energy Research Committee in the Japan Welding Engineering Society. The study on design fatigue curves was actively performed in the subcommittees. In the subcommittees, domestic and foreign fatigue data of small test specimens in air were collected and a comprehensive fatigue database was constructed. Using this fatigue database, the accurate best-fit curves of carbon steels & low alloy steels and austenitic stainless steels were developed by applying tensile strength to a parameter of the curve. Regarding design factors on design fatigue curves, data scatter, mean stress correction, surface finishing effect, size effect and variable loading effect were investigated and each design factor was decided to be individually considered on the design fatigue curves. A Japanese utility project performed large scale fatigue tests using austenitic stainless steel piping and low-alloy-steel flat plates as well as fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect and surface finishing effect. Those test results were provided to the subcommittee and utilized the above studies. In the last PVP Conference, the large scale fatigue tests using austenitic stainless steel piping were discussed for the best-fit curve of austenitic stainless steel (PVP2018-84436). In this paper, further studies are performed based on fatigue crack growth of the large scale fatigue tests using austenitic stainless steel piping. From the obtained crack growth data of the tested piping, the number of cycles at 3-mm-deep crack depth and through-wall crack of piping compares with the best-fit curve developed by the DFC1 subcommittee with considering the confidence lower bounds to survey the fatigue life of piping, and size effect for fatigue lives is discussed. The relations between the fatigue crack growths and the number of cycles and the aspect ratios are surveyed including mean stress effect.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9014-9014 ◽  
Author(s):  
Tara C. Gangadhar ◽  
Bryan J. Schneider ◽  
Todd Michael Bauer ◽  
Jeffrey S. Wasser ◽  
Alexander I. Spira ◽  
...  

9014 Background: ECHO-202/KEYNOTE-037 is an open-label, phase 1/2 study of epacadostat (a potent and selective oral inhibitor of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1) plus pembrolizumab (E + P) in patients (pts) with advanced tumors. We report preliminary efficacy and safety outcomes for the phase 1/2 NSCLC cohort. Methods: Adult pts with prior platinum-based therapy (tx) and no prior checkpoint inhibitor tx were eligible. Phase 1 dose-escalation tx was E (25, 50, 100, 300 mg PO BID) + P (2 mg/kg or 200 mg IV Q3W); MTD was not exceeded. E (100 mg BID) + P (200 mg Q3W) tx doses were selected for phase 2 cohort expansion. Efficacy was evaluated by tumor proportion score (TPS [% viable tumor cells, PD-L1 staining]: < 50% and ≥50%) and by prior lines of tx in RECIST 1.1 evaluable pts. Safety was assessed in pts receiving ≥1 E + P dose. Results: As of 29OCT2016,43 pts (phase 1, n = 12; phase 2, n = 31) were evaluated. Median age was 65 years, 58% of pts were women, 12% were EGFR-positive, and 23% were KRAS-positive. Most pts had a history of smoking (84%), ≤2 prior lines of tx (84%), and no prior TKI tx (93%). For the 40 efficacy-evaluable pts, ORR (CR+PR) and DCR (CR+PR+SD) were 35% (14/40; 14 PR) and 60% (24/40; 10 SD), respectively. PD-L1 TPS test results were available in 28/40 efficacy-evaluable pts. ORR and DCR for pts with TPS ≥50% and ≤2 prior tx were 43% (3/7; all PR) and 57% (4/7; 1 SD), respectively; for pts with TPS < 50% and ≤2 prior tx, ORR and DCR were 35% (6/17; all PR) and 53% (9/17; 3 SD). Among the 40 efficacy-evaluable pts, 12/14 responses were ongoing (range, 1+ to 519 days) at data cutoff. PFS and biomarker analyses are ongoing. Across all 43 pts, most frequent TRAEs were fatigue (19%), arthralgia (9%), and increased AST (9%); 16% of pts had grade ≥3 TRAEs, and increased lipase (asymptomatic) was the only grade ≥3 TRAE that occurred in > 1 pt (n = 2). Two pts discontinued due to TRAEs (grade 3 increased AST, grade 2 increased ALT [n = 1]; grade 2 brain edema [n = 1]). Conclusions: E + P was generally well tolerated and associated with promising responses in pts with NSCLC. A phase 3 NSCLC study is planned. Clinical trial information: NCT02178722.


Author(s):  
Peter Schaumann ◽  
Alexander Raba ◽  
Anne Bechtel

Grouted connections represent a common joining technique between substructure and foundation piles of offshore oil & gas platforms as well as of offshore wind turbines. Due to cyclic loads arising from wind and wave actions the fatigue performance of the connection has to be considered. In lattice substructures like jackets the grouted connections are located at seabed level being fully submerged during their entire lifetime. Today’s fatigue design regulations are based on investigations neglecting any influence of the surrounding water since they were conducted in dry ambient conditions. So far, only Germanischer Lloyd gives additional recommendations for submerged grouted connections. At the Institute for Steel Construction, Leibniz Universität Hannover, Germany investigations of the joint research project ‘GROWup’ focus on the fatigue performance of axially loaded grouted connections. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi, funding sign: 0325290) and is the third project in a row dealing with grouted connections. As part of this research project, cyclic loading tests on small-scale and large-scale grouted connections with shear keys are conducted. Small-scale fatigue tests showed a reduced number of endurable load cycles for connections when tested in wet ambient conditions. However, the transferability of these findings to a larger scale was still doubtful due to unknown scale effects. Therefore, the impact of water on the fatigue performance was tested recently at large-scale grouted connections. Previous to the submerged large-scale grouted connection fatigue tests, similar test specimens were exposed to alternating loads at dry ambient conditions. Comparison of both large-scale test results under wet and dry conditions enable to estimate the influence of water on the fatigue performance of grouted connections. Reflection of the small-scale test results gives hints on the scale effect. Test preparation, test results and design recommendations are presented in the paper.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 229-230
Author(s):  
Peter J Lammers ◽  
Chad A Stahl ◽  
Mark S Honeyman

Abstract A 2 × 2 × 2 factorial design was used to compare the effect of SID Lys:ME concentration (current vs. reduced), stocking density (1.30 vs. 4.05 m2/pig), and harvest month (August vs. March) on pigs raised in bedded hoop barns in Western Iowa. For each harvest month, 420 pigs produced from the mating of Duroc boars (Choice Genetics; West Des Moines, IA) to Camborough females (PIC; Hendersonville, TN) were sorted into 12 pens. Six pens were inside 3 large-scale (9.1 × 18.3 m) hoop barns and were stocked with 64 pigs/pen (32 barrows and 32 gilts; 1.30 m2/ pig). Six pens were inside 3 small-scale (6.0 × 10.8 m) hoop barns and were stocked with 6 pigs/pen (3 barrows and 3 gilts; 4.05 m2/pig). Within each stocking density, pens were randomly assigned to 1 of 2 diets which were fed in 2 phases. Corn-soybean meal diets were formulated to deliver 2.94 or 2.34 g SID Lys per Mcal ME in phase 1 (72.6–95.0 kg) and 2.34 or 1.76 g SID Lys per Mcal ME in phase 2 (> 95.0 kg). Pigs were individually weighed every 28 days and feed disappearance was recorded. When pigs in a pen averaged 129.3 kg the entire pen of pigs were harvested. A single chop (last-rib location; 2.54 cm thick) was collected from each carcass to assess pork quality. Pigs harvested in the summer grew faster, more efficiently, and with more intramuscular fat than those harvested in winter (P-value ≤ 0.05) but had lower 10th rib pH (P-value < 0.0001). Pigs allotted 4.05 m2/pig grew more efficiently but had reduced last rib pH as compared to pigs stocked at 1.30 m2/pig (P-value < 0.05). Reducing SID Lys:ME did not impact growth performance or carcass characteristics (P-value > 0.10). Lower concentrations of SID Lys:ME may be adequate for pigs housed in bedded hoop barns but further study is warranted.


Author(s):  
Masaru Bodai ◽  
Yuichi Fukuta ◽  
Seiji Asada ◽  
Kentaro Hayashi

In order to develop new design fatigue curves for austenitic carbon steels & low alloy steels and stainless steels and a new design fatigue evaluation method that are rational and have clear design basis, Design Fatigue Curve (DFC) Phase 1 subcommittee and Phase 2 subcommittee were established in the Atomic Energy Research Committee in the Japan Welding Engineering Society. The study on design fatigue curves was actively performed in the subcommittees. In the subcommittees, domestic and foreign fatigue data of small test specimens in air were collected and a comprehensive fatigue database was constructed. Using this fatigue database, the accurate best-fit curves of austenitic carbon steels & low alloy steels and stainless steels were developed by applying tensile strength to a parameter of the curve. Regarding design factors on design fatigue curves, data scatter, mean stress correction, surface finishing effect, size effect and variable loading effect were investigated and each design factor was decided to be individually considered on the design fatigue curves. A Japanese utility project performed large scale fatigue tests using austenitic stainless steel piping and carbon and low-alloy steel flat plates as well as fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect and surface finishing effect. Those test results were provided to the subcommittee and utilized the above studies. In this paper, the large scale fatigue tests using austenitic stainless steel piping and the best-fit curve of austenitic stainless steel are discussed.


2021 ◽  
Author(s):  
Patrick Crowley ◽  
Sheikh Mohammed Shariful Islam ◽  
Rasmus Kildedal ◽  
Sandra Schade Jacobsen ◽  
Jon Roslyng Larsen ◽  
...  

BACKGROUND There is increasing recognition of the need for more comprehensive surveillance data, including information on physical activity of all intensities, sedentary behavior, and sleep. However, meeting this need poses significant challenges for current surveillance systems, which are mainly reliant on self-report. OBJECTIVE The primary objective of the SurPASS (Surveillance of Physical Activity Sedentary behavior and Sleep) project is to develop and evaluate the feasibility of a sensor-based system for use in the surveillance of physical activity of all intensities, sedentary behavior, and sleep. METHODS The SurPASS project involves an international, multidisciplinary team of researchers collaborating with an industrial partner. The SurPASS system consists of 1) a thigh-worn accelerometer with Bluetooth connectivity, 2) a smartphone app, 3) an integrated back-end, facilitating the automated upload, analysis, storage, and provision of personalized feedback in a manner compliant with European Union regulations on data privacy, and 4) an administrator web-interface (web-app) to monitor progress. The system development and evaluation will be performed in three phases. These phases will include gathering user input and specifications (Phase 1), the iterative development, evaluation and refinement of the system (Phase 2), and the feasibility evaluation (Phase 3). RESULTS The project started in September 2020, is currently in Phase 2, and will be completed in 2023. CONCLUSIONS If feasible, the SurPASS system could be a catalyst towards large-scale sensor-based surveillance of physical activity, sedentary behavior and sleep. It could also be adapted for cohort and interventional research, thus contributing to the generation of evidence for both interventions and public health policies and recommendations.


Author(s):  
Sachin Dhiman ◽  
Kanhu Charan Patra

Abstract. Laboratory data obtained from the overtopping failure of eight cohesive embankments built with different construction parameters are presented in this paper. Experiments were performed in two phases. Five experiments under phase 1 were carried out in small width flume having dimension viz. 17 m long, 0.6 m wide and 0.6 m high. In phase 2, three experiments were performed on large width flume having dimensions viz. 13 m long, 1.75 m wide and 0.5 m high. The construction parameters which were varied in embankments are compaction effort, compaction moisture content, and the moisture content at the time of failure. Phase 1 investigate the effect of compaction effort and compaction moisture content on breach parameters. As the water content of clay decreases or increases, the soil shrinks or swells which can cause damage ranging from small hairline cracks to severe structural distress. The sudden rise of water level in the reservoir due to heavy rain will cause rushing of water through cracks and if water overtopped the embankment will lead to quick failure. An attempt was made in phase 2 to investigate the effects on breach evolution when the embankments were air dried to reduce its moisture content and to develop cracks. The final breach shape and parameters noted in experiments show remarkable change for each dam failure. In the remainder of this paper, we report results of a set of small and large scale dam-overtopping experiments that were designed to; (1) investigate the effect of changing compaction effort and moisture content of the headcut migration, breach parameters, and flood hydrograph; (2) assess the overtopping behaviour of embankments when they are air dried for a long time.


Sign in / Sign up

Export Citation Format

Share Document