scholarly journals Experimental study of embankment breach based on its construction parameters

Author(s):  
Sachin Dhiman ◽  
Kanhu Charan Patra

Abstract. Laboratory data obtained from the overtopping failure of eight cohesive embankments built with different construction parameters are presented in this paper. Experiments were performed in two phases. Five experiments under phase 1 were carried out in small width flume having dimension viz. 17 m long, 0.6 m wide and 0.6 m high. In phase 2, three experiments were performed on large width flume having dimensions viz. 13 m long, 1.75 m wide and 0.5 m high. The construction parameters which were varied in embankments are compaction effort, compaction moisture content, and the moisture content at the time of failure. Phase 1 investigate the effect of compaction effort and compaction moisture content on breach parameters. As the water content of clay decreases or increases, the soil shrinks or swells which can cause damage ranging from small hairline cracks to severe structural distress. The sudden rise of water level in the reservoir due to heavy rain will cause rushing of water through cracks and if water overtopped the embankment will lead to quick failure. An attempt was made in phase 2 to investigate the effects on breach evolution when the embankments were air dried to reduce its moisture content and to develop cracks. The final breach shape and parameters noted in experiments show remarkable change for each dam failure. In the remainder of this paper, we report results of a set of small and large scale dam-overtopping experiments that were designed to; (1) investigate the effect of changing compaction effort and moisture content of the headcut migration, breach parameters, and flood hydrograph; (2) assess the overtopping behaviour of embankments when they are air dried for a long time.

2019 ◽  
Author(s):  
Nils Madenach ◽  
Cintia Carbajal Henken ◽  
René Preusker ◽  
Odran Sourdeval ◽  
Jürgen Fischer

Abstract. 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data is analyzed to identify possible changes of the cloud vertical distribution over the Tropical Atlantic Ocean (TAO). For the analysis multiple linear regression techniques are used. Within the investigated period, no significant trend in the domain-averaged cloud vertical distribution was found. In terms of linear changes, two major phases (before and after November 2011) in the time-series of the TAO domain-average Cloud Top Height (CTH) and High Cloud Fraction (HCF) can be distinguished. While phase 1 is dominated by a significant linear increase, phase 2 is characterized by a strong, significant linear decrease. The observed trends were mainly caused by the El Niño Southern Oscillation (ENSO). The increase in CTH and HCF in phase 1, was attributed to the transition from El Niño (2002) to La Niña (2011) conditions. The strong decrease in phase 2, was caused by the opposite transition from a La Niña (2011) to a major El Niño event (2016). A comparison with the large scale vertical motion ω at 500 hPa obtained from ERA-Interim ECMWF Re-Analyses and the Nino3.4-Index indicates that the changes in HCF are induced by ENSO linked changes in the large scale vertical upward movements over regions with strong large scale ascent. A first comparison with the DARDAR data set, which combines CloudSat radar and CALIPSO lidar measurements, shows qualitatively good agreements for the interannual variability of the high cloud amount and its linear decrease in phase 2.


Author(s):  
Masahiro Takanashi ◽  
Hiroshi Ueda ◽  
Toshiyuki Saito ◽  
Takuya Ogawa ◽  
Kentaro Hayashi

In Japan, the Design Fatigue Curve (DFC) Phase 1 and Phase 2 subcommittees were organized under the Atomic Energy Research Committee in the Japan Welding Engineering Society and have proposed new design fatigue curves for carbon, low-alloy, and austenitic stainless steels. To confirm the validity of the proposed design fatigue curves, a Japanese utility collaborative project was launched. In this project, fatigue tests were conducted on large-scale and small-sized specimens, and the test data were provided to the DFC Phase 2 subcommittee. This paper discusses the best-fit curves proposed by the DFC Phase 1 subcommittee, focusing on the results of large-scale fatigue tests for carbon steel and low-alloy steel plates. The fatigue test results for large-scale specimens were compared with the best-fit curve proposed by the DFC Phase 1 subcommittee. This comparison revealed that the fatigue lives given by the proposed curves correspond to those of approximately 1.5–4.0-mm-deep crack initiation in large-scale specimens. In this program, fatigue tests with a mean strain were also carried out on large-scale specimens. These tests found that the fatigue lives were almost equivalent to those of approximately 4.4–7.0-mm-deep crack initiation in large-scale specimens. In determining a design fatigue curve, strain-controlled tests are usually performed on small-sized specimens, and the fatigue life is then defined by the 25% load drop. It is reported that the cracks reach nearly 3–4-mm depth under those 25% drop cycles. The test results confirm that the fatigue lives of large-scale specimens agree with those given by the best-fit curve for carbon and low-alloy steels, and no remarkable size effects exist for the crack depths compared in this study.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 229-230
Author(s):  
Peter J Lammers ◽  
Chad A Stahl ◽  
Mark S Honeyman

Abstract A 2 × 2 × 2 factorial design was used to compare the effect of SID Lys:ME concentration (current vs. reduced), stocking density (1.30 vs. 4.05 m2/pig), and harvest month (August vs. March) on pigs raised in bedded hoop barns in Western Iowa. For each harvest month, 420 pigs produced from the mating of Duroc boars (Choice Genetics; West Des Moines, IA) to Camborough females (PIC; Hendersonville, TN) were sorted into 12 pens. Six pens were inside 3 large-scale (9.1 × 18.3 m) hoop barns and were stocked with 64 pigs/pen (32 barrows and 32 gilts; 1.30 m2/ pig). Six pens were inside 3 small-scale (6.0 × 10.8 m) hoop barns and were stocked with 6 pigs/pen (3 barrows and 3 gilts; 4.05 m2/pig). Within each stocking density, pens were randomly assigned to 1 of 2 diets which were fed in 2 phases. Corn-soybean meal diets were formulated to deliver 2.94 or 2.34 g SID Lys per Mcal ME in phase 1 (72.6–95.0 kg) and 2.34 or 1.76 g SID Lys per Mcal ME in phase 2 (> 95.0 kg). Pigs were individually weighed every 28 days and feed disappearance was recorded. When pigs in a pen averaged 129.3 kg the entire pen of pigs were harvested. A single chop (last-rib location; 2.54 cm thick) was collected from each carcass to assess pork quality. Pigs harvested in the summer grew faster, more efficiently, and with more intramuscular fat than those harvested in winter (P-value ≤ 0.05) but had lower 10th rib pH (P-value < 0.0001). Pigs allotted 4.05 m2/pig grew more efficiently but had reduced last rib pH as compared to pigs stocked at 1.30 m2/pig (P-value < 0.05). Reducing SID Lys:ME did not impact growth performance or carcass characteristics (P-value > 0.10). Lower concentrations of SID Lys:ME may be adequate for pigs housed in bedded hoop barns but further study is warranted.


2021 ◽  
Author(s):  
Patrick Crowley ◽  
Sheikh Mohammed Shariful Islam ◽  
Rasmus Kildedal ◽  
Sandra Schade Jacobsen ◽  
Jon Roslyng Larsen ◽  
...  

BACKGROUND There is increasing recognition of the need for more comprehensive surveillance data, including information on physical activity of all intensities, sedentary behavior, and sleep. However, meeting this need poses significant challenges for current surveillance systems, which are mainly reliant on self-report. OBJECTIVE The primary objective of the SurPASS (Surveillance of Physical Activity Sedentary behavior and Sleep) project is to develop and evaluate the feasibility of a sensor-based system for use in the surveillance of physical activity of all intensities, sedentary behavior, and sleep. METHODS The SurPASS project involves an international, multidisciplinary team of researchers collaborating with an industrial partner. The SurPASS system consists of 1) a thigh-worn accelerometer with Bluetooth connectivity, 2) a smartphone app, 3) an integrated back-end, facilitating the automated upload, analysis, storage, and provision of personalized feedback in a manner compliant with European Union regulations on data privacy, and 4) an administrator web-interface (web-app) to monitor progress. The system development and evaluation will be performed in three phases. These phases will include gathering user input and specifications (Phase 1), the iterative development, evaluation and refinement of the system (Phase 2), and the feasibility evaluation (Phase 3). RESULTS The project started in September 2020, is currently in Phase 2, and will be completed in 2023. CONCLUSIONS If feasible, the SurPASS system could be a catalyst towards large-scale sensor-based surveillance of physical activity, sedentary behavior and sleep. It could also be adapted for cohort and interventional research, thus contributing to the generation of evidence for both interventions and public health policies and recommendations.


2020 ◽  
Author(s):  
Vladimir Shipilin ◽  
David Colin Tanner ◽  
Hartwig von Hartmann ◽  
Inga Moeck

Abstract. We use three-dimensional seismic reflection data from the southern German Molasse Basin to investigate the struc-tural style and evolution of a geometrically decoupled fault network in close proximity to the Alpine deformation front. We recognise two fault arrays that are vertically separated by a clay-rich detachment horizon. A large-scale thrust partially over-prints the upper fault array. Analysis of seismic stratigraphy, syn-kinematic strata, throw distribution, and spatial relationships between faults suggest a multiphase fault evolution: (1) initiation of the lower fault array in the Upper Jurassic carbonate platform during the Rupelian, (2) development of the upper fault array in the Cenozoic sediments during the Chattian, and (3) reverse reactivation of the upper faults and thrusting during the mid-Miocene. These phases document the evolution of the stress field during the migration of the forebulge (phase 1), foredeep (phase 2) and the toe of the orogenic front (phase 3) across the investigated area. We postulate that phase 2 was controlled by the vertical stress gradients, whereby a lower horizontal stress component within the Cenozoic sediments defined the independent development of the upper faults above the lower faults. Mechanical behaviour of the clay-rich horizon precluded the subsequent linkage of the fault arrays. A large-scale thrust must have been facilitated by the reverse reactivation of the upper normal faults, as its maximum displacement and extent correlate with the occurrence of these faults. We conclude that the evolving tectonic stresses were the primary mechanism of fault activation, whereas the mechanical stratigraphy and pre-existing structures locally governed the structural style.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. TPS720-TPS720
Author(s):  
Zev A. Wainberg ◽  
Lan Wang ◽  
Huibin Yue ◽  
Monica Motwani ◽  
Sreeneeranj Kasichayanula ◽  
...  

TPS720 Background: Dual variable domain immunoglobulin ABT-165 targets human vascular endothelial growth factor (VEGF) and delta-like ligand 4 (DLL4). Combined VEGF and DLL4 blockade increased inhibition of subcutaneous xenograft growth of human colon cancer-derived cell lines versus blockade of either axis alone. In vivo, ABT-165 plus chemotherapy (CT) induced tumor regression with improved efficacy, vs anti-VEGF monoclonal antibody plus CT. In a phase 1 study, tolerable recommended phase 2 dose was identified for ABT-165 plus FOLFIRI and showed promising efficacy. This phase 2 trial in progress assesses efficacy/safety of ABT-165 plus FOLFIRI vs bevacizumab (bev) plus FOLFIRI in patients with second-line mCRC. Methods: This is an open-label, multicenter, phase 2 randomized (1:1) trial (NCT03368859) in patients (≥ 18 years; Eastern Cooperative performance status: 0–1) with histologically/cytologically confirmed mCRC who progressed after fluoropyrimidine/oxaliplatin and bev. ABT-165 (2.5 mg/kg) plus FOLFIRI (irinotecan: 180 mg/m2; leucovorin: 400 mg/m2; fluorouracil bolus: 400 mg/m2, infusion: 2400 mg/m2) or bev (5 mg/kg) plus FOLFIRI are given intravenously on day 1 of each 14-day cycle, until disease progression/intolerable toxicity. Primary endpoint is progression-free survival (PFS). Secondary endpoints include overall survival (OS), objective response rate (ORR), and safety. Exploratory endpoints include biomarkers predictive for efficacy/safety, correlation of DLL4 levels with PFS, OS, and ORR, pharmacodynamic effects, and efficacy/safety-exposure relationships in ABT-165 arm. Hazard ratios of PFS and OS comparing the 2 groups are estimated using Cox proportional hazard model. Kaplan-Meier methodology is used to estimate PFS and OS curves, median PFS and OS, and their 90% confidence intervals. Safety is assessed by ABT-165 exposure, adverse events (AEs), serious AEs, all deaths, and changes in laboratory data and vital signs. Archival tissue is collected and evaluated for DLL4 expression and angiogenesis signature. Approximately 100 patients are planned to be enrolled, with recruitment initiated January 2018. Clinical trial information: NCT03368859.


2020 ◽  
Author(s):  
Nandan L. Patil

AbstractSince the first report of COVID-19 from Wuhan China, the virus has rapidly spread across the globe now presently reported in 177 countries with positive cases crossing 400 thousand and rising. In the current study, prediction is made for highly infected countries by a simple and novel method using only cumulative positive cases reported. The rate of infection per week (Rw) coefficient delineated three phases for the current COVID-19 pandemic. All the countries under study have passed Phase 1 and are currently in Phase 2 except for South Korea which is in Phase 3. Early detection with rapid and large-scale testing helps in controlling the COVID-19 pandemic. Staying in Phase 2 for longer period would lead to increase in COVID-19 positive cases.


1981 ◽  
Vol 18 (5) ◽  
pp. 944-958 ◽  
Author(s):  
Randall R. Parrish

High-grade metasedimentary rocks, probably of both early Paleozoic and late Paleozoic – Triassic ages, underlie an area termed the Nemo Lakes belt between Slocan and Arrow Lakes in the northern Valhalla Range, southeastern British Columbia. The rocks have experienced two possibly related periods of major folding. Phase 1, accompanied and outlasted by metamorphism at P–T conditions of 5.0–6.8 kbar (500–680 MPa) and 630–680 °C, involved emplacement of ultramafic rocks, major faulting, and folding. Phase 2 involved large-scale inclined to upright folds which were dominantly south-verging, deforming the phase 1 fabric. Both phases probably occurred in the Middle to Late Jurassic, as part of the Columbian Orogeny.Rocks lithologically and structurally similar to those of the Nemo Lakes belt are found across the Rodd Creek fault near the Columbia River and extend the general continuity of the belt into the Shuswap metamorphic complex.Plutonic rocks, some of which bracket the movement on the Rodd Creek fault, the southern extension of the Columbia River fault zone, range in age from Middle Jurassic to EoceneIn the valley of Slocan Lake, a major normal fault is postulated on structural and metamorphic grounds and may be related to the north–south arching of the Valhalla gneiss complex. It is suggested that this arching and uplift, which followed phase 2 deformation, produced both the fault and a zone of cataclasis on the eastern side of the complex, and gave rise to its domal shape.


2021 ◽  
Author(s):  
Osvaldo Espin-Garcia ◽  
Radu V. Craiu ◽  
Shelley B. Bull

Post-GWAS analysis, in many cases, focuses on fine-mapping targeted genetic regions discovered at GWAS-stage; that is, the aim is to pinpoint potential causal variants and susceptibility genes for complex traits and disease outcomes using next-generation sequencing (NGS) technologies. Large-scale GWAS cohorts are necessary to identify target regions given the typically modest genetic effect sizes. In this context, two-phase sampling design and analysis is a cost-reduction technique that utilizes data collected during phase 1 GWAS to select an informative subsample for phase 2 sequencing. The main goal is to make inference for genetic variants measured via NGS by efficiently combining data from phases 1 and 2. We propose two approaches for selecting a phase 2 design under a budget constraint. The first method identifies sampling fractions that select a phase 2 design yielding an asymptotic variance covariance matrix with certain optimal characteristics, e.g. smallest trace, via Lagrange multipliers (LM). The second relies on a genetic algorithm (GA) with a defined fitness function to identify exactly a phase 2 subsample. We perform comprehensive simulation studies to evaluate the empirical properties of the proposed designs for a genetic association study of a quantitative trait. We compare our methods against two ranked designs: residual-dependent sampling and a recently identified optimal design. Our findings demonstrate that the proposed designs, GA in particular, can render competitive power in combined phase 1 and 2 analysis compared to alternative designs while preserving type 1 error control. These results are especially apparent under the more practical scenario where design values need to be defined a priori and are subject to mispecification. We illustrate the proposed methods in a study of triglyceride levels in the North Finland Birth Cohort of 1966. R code to reproduce our results is available at github.com/egosv/TwoPhase_postGWAS.


2001 ◽  
Vol 60 (4) ◽  
pp. 215-230 ◽  
Author(s):  
Jean-Léon Beauvois

After having been told they were free to accept or refuse, pupils aged 6–7 and 10–11 (tested individually) were led to agree to taste a soup that looked disgusting (phase 1: initial counter-motivational obligation). Before tasting the soup, they had to state what they thought about it. A week later, they were asked whether they wanted to try out some new needles that had supposedly been invented to make vaccinations less painful. Agreement or refusal to try was noted, along with the size of the needle chosen in case of agreement (phase 2: act generalization). The main findings included (1) a strong dissonance reduction effect in phase 1, especially for the younger children (rationalization), (2) a generalization effect in phase 2 (foot-in-the-door effect), and (3) a facilitatory effect on generalization of internal causal explanations about the initial agreement. The results are discussed in relation to the distinction between rationalization and internalization.


Sign in / Sign up

Export Citation Format

Share Document