Effect of Coolant Water Temperature of ECCS on Failure Probability of RPV

Author(s):  
Jinya Katsuyama ◽  
Koichi Masaki ◽  
Kai Lu ◽  
Tadashi Watanabe ◽  
Yinsheng Li

Abstract For reactor pressure vessels (RPVs) of pressurized water reactors, temperature of the coolant water in the emergency core cooling system (ECCS) may influence the structural integrity of the RPV during pressurized thermal shock (PTS) events. By focusing on a mitigation measure to raise the coolant water temperature of ECCS for aged RPVs to reduce the effect of thermal shock due to PTS events, we performed thermal hydraulic analyses and probabilistic fracture mechanics analyses by using RELAP5 and PASCAL4, respectively. The analysis results show that the failure probability of RPV decreased dramatically when the coolant temperature in accumulator as well as in the high- and low-pressure injection systems (HPI/LPI) was increased, although the increase in coolant temperature in the HPI/LPI only did not lead to a decrease in the failure probability.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Kai Lu ◽  
Jinya Katsuyama ◽  
Koichi Masaki ◽  
Tadashi Watanabe ◽  
Yinsheng Li

Abstract Structural integrity assessment of reactor pressure vessel (RPV) is important for the safe operation of nuclear power plant. For an RPV in a pressurized water reactor (PWR), pressurized thermal shock (PTS) resulted from rapid coolant water injection due to a loss-of-coolant accident is an issue of particular concern. The coolant water temperature in the emergency core cooling system (ECCS) can influence the integrity of RPV subjected to PTS events; thus, this paper is focused on investigating the effect of coolant water temperature of ECCS on failure probability of an RPV. First, thermal-hydraulic (TH) analyses were conducted for a Japanese PWR model plant by using RELAP5, and different coolant water temperatures in ECCS were considered to investigate the effect of coolant water temperature on TH behaviors during a PTS event. Using the TH analysis results, probabilistic fracture mechanics (PFM) analyses were performed for the RPV of the Japanese model plant. Based on the PFM analysis results, the effect of coolant water temperature on failure probability of the RPV was quantified.


Author(s):  
Xiaoyong Ruan ◽  
Toshiki Nakasuji ◽  
Kazunori Morishita

The structural integrity of a reactor pressure vessel (RPV) is important for the safety of a nuclear power plant. When the emergency core cooling system (ECCS) is operated and the coolant water is injected into the RPV due to a loss-of-coolant accident (LOCA), the pressurized thermal shock (PTS) loading takes place. With the neutron irradiation, PTS loading may lead a RPV to fracture. Therefore, it is necessary to evaluate the performance of RPV during PTS loading to keep the reactor safety. In the present study, optimization of RPV maintenance is considered, where two different attempts are made to investigate the RPV integrity during PTS loading by employing the deterministic and probabilistic methodologies. For the deterministic integrity evaluation, 3D-CFD and finite element method (FEM) simulations are performed, and stress intensity factors (SIFs) are obtained as a function of crack position inside the RPV. As to the probabilistic integrity evaluation, on the other hand, a more accurate spatial distribution of SIF on the RPV is calculated. By comparing the distribution thus obtained with the fracture toughness included as a part of the master curve, the dependence of fracture probabilities on the position inside the RPV is obtained. Using the spatial distribution of fracture probabilities in RPV, the priority of the inspection and maintenance is finally discussed.


Author(s):  
Zengliang Gao ◽  
Yuebing Li ◽  
Yuebao Lei

Both probabilistic and deterministic methods are used in structural integrity assessment of reactor pressure vessels (RPV) under pressurized thermal shock (PTS) conditions. The deterministic assessment is normally performed using flaw assessment procedures based on linear elastic or elastic-plastic fracture mechanics. Over the past two decades, the probabilistic assessment approach, which is based on probabilistic fracture mechanics (PFM), has undergone continuous development, mostly driven by the desire to address some of the weaknesses of the deterministic approach and to facilitate increasing the life and safety of nuclear power plants. In this paper, structural integrity assessments for a selected RPV subjected to a typical PTS transient are performed using the deterministic approach according to different flaw assessment codes. The failure probabilities corresponding to the deterministic facture mechanics method with defined safety factors are evaluated and compared with the failure probability value determined using the PFM method. Several sources of uncertainty that affect the assessment of the structural integrity of an RPV under PTS, including uncertainties in the material property values, the fracture toughness and the flaw size are incorporated in the failure probability evaluation. The response distribution of crack driving force is obtained from the PFM analysis and the failure probability is calculated using Monte Carlo simulation, where the failure criteria used in the deterministic assessment are adopted. The results of analysis from the two approaches are compared and discussed. The results show that the defined safety factor in the deterministic methods does affect the limit failure probability implied by the method. However, there is no unique relationship between safety factor and the limit failure probability.


Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Tomasz Bury

Abstract The problem of hydrogen behavior in containment buildings of nuclear reactors belongs to thermal-hydraulic area. Taking into account the size of systems under consideration and, first of all, safety issues, such type of analyses cannot be done by means of full-scale experiments. Therefore, mathematical modeling and numerical simulations are widely used for these purposes. A lumped parameter approach based code HEPCAL has been elaborated in the Institute of Thermal Technology of the Silesian University of Technology for simulations of pressurized water reactor containment transient response. The VVER-440/213 and European pressurised water reactor (EPR) reactors containments are the subjects of analysis within the framework of this paper. Simulations have been realized for the loss-of-coolant accident scenarios with emergency core cooling system failure. These scenarios include core overheating and hydrogen generation. Passive autocatalytic recombiners installed for removal of hydrogen has been taken into account. The operational efficiency of the hydrogen removal system has been evaluated by comparing with an actual hydrogen concentration and flammability limit. This limit has been determined for the three-component mixture of air, steam and hydrogen. Some problems related to the lumped parameter approach application have been also identified.


Author(s):  
T. L. Dickson ◽  
F. A. Simonen

The current regulations for pressurized thermal shock (PTS) were derived from computational models that were developed in the early-mid 1980s. The computational models utilized in the 1980s conservatively postulated that all fabrication flaws in reactor pressure vessels (RPVs) were inner-surface breaking flaws. It was recognized at that time that flaw-related data had the greatest level of uncertainty of the inputs required for the probabilistic-based PTS evaluations. To reduce this uncertainty, the United States Nuclear Regulatory Commission (USNRC) has in the past few years supported research at Pacific Northwest National Laboratory (PNNL) to perform extensive nondestructive and destructive examination of actual RPV materials. Such measurements have been used to characterize the number, size, and location of flaws in various types of welds and the base metal used to fabricate RPVs. The USNRC initiated a comprehensive project in 1999 to re-evaluate the current PTS regulations. The objective of the PTS Re-evaluation program has been to incorporate advancements and refinements in relevant technologies (associated with the physics of PTS events) that have been developed since the current regulations were derived. There have been significant improvements in the computational models for thermal hydraulics, probabilistic risk assessment (PRA), human reliability analysis (HRA), materials embrittlement effects on fracture toughness, and fracture mechanics methodology. However, the single largest advancement has been the development of a technical basis for the characterization of fabrication-induced flaws. The USNRC PTS-Revaluation program is ongoing and is expected to be completed in 2002. As part of the PTS Re-evaluation program, the updated risk-informed computational methodology as implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code, including the improved PNNL flaw characterization, was recently applied to a domestic commercial pressurized water reactor (PWR). The objective of this paper is to apply the same updated computational methodology to the same PWR, except utilizing the 1980s flaw model, to isolate the impact of the improved PNNL flaw characterization on the PTS analysis results. For this particular PWR, the improved PNNL flaw characterization significantly reduced the frequency of RPV failure, i.e., by between one and two orders of magnitude.


2020 ◽  
Vol 01 (02) ◽  
pp. 53-60
Author(s):  
Pronob Deb Nath ◽  
Kazi Mostafijur Rahman ◽  
Md. Abdullah Al Bari

This paper evaluates the thermal hydraulic behavior of a pressurized water reactor (PWR) when subjected to the event of Loss of Coolant Accident (LOCA) in any channel surrounding the core. The accidental break in a nuclear reactor may occur to circulation pipe in the main coolant system in a form of small fracture or equivalent double-ended rupture of largest pipe connected to primary circuit line resulting potential threat to other systems, causing pressure difference between internal parts, unwanted core shut down, explosion and radioactivity release into environment. In this computational study, LOCA for generation III+ VVER-1200 reactor has been carried out for arbitrary break at cold leg section with and without Emergency Core Cooling System (ECCS). PCTRAN, a thermal hydraulic model-based software developed using real data and computational approach incorporating reactor physics and control system was employed in this study. The software enables to test the consequences related to reactor core operations by monitoring different operating variables in the system control bar. Two types of analysis were performed -500% area break at cold leg pipe due to small break LOCA caused by malfunction of the system with and without availability of ECCS. Thermal hydraulic parameters like, coolant dynamics, heat transfer, reactor pressure, critical heat flux, temperature distribution in different sections of reactor core have also been investigated in the simulation. The flow in the reactor cooling system, steam generators steam with feed-water flow, coolant steam flow through leak level of water in different section, power distribution in core and turbine were plotted to analyze their behavior during the operations. The simulation showed that, LOCA with unavailability of Emergency Core Cooling System (ECCS) resulted in core meltdown and release of radioactivity after a specific time.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Kunio Onizawa

To apply a probabilistic fracture mechanics (PFM) analysis to the structural integrity assessment of a reactor pressure vessel (RPV), a PFM analysis code has been developed at JAEA. Using this PFM analysis code, pascal version 3, the conditional probabilities of crack initiation (CPIs) and fracture for an RPV during pressurized thermal shock (PTS) events have been analyzed. Sensitivity analyses on certain input parameters were performed to clarify their effect on the conditional fracture probability. Comparisons between the conditional probabilities and the temperature margin (ΔTm) based on the current deterministic analysis method were made for various model plant conditions for typical domestic older types of RPVs. From the analyses, a good correlation between ΔTm and the conditional probability of crack initiation was obtained.


Author(s):  
Terry L. Dickson ◽  
Shah N. Malik ◽  
Mark T. Kirk ◽  
Deborah A. Jackson

The current federal regulations to ensure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models that were developed in the early to mid 1980s. Since that time, there have been advancements in relevant technologies associated with the physics of PTS events that impact RPV integrity assessment. Preliminary studies performed in 1999 suggested that application of the improved technology could reduce the conservatism in the current regulations while continuing to provide reasonable assurance of adequate protection to public health and safety. A relaxation of PTS regulations could have profound implications for plant license extension considerations. Based on the above, in 1999, the United States Nuclear Regulatory Commission (USNRC) initiated a comprehensive project, with the nuclear power industry as a participant, to re-evaluate the current PTS regulations within the framework established by modern probabilistic risk assessment (PRA) techniques. During the last three years, improved computational models have evolved through interactions between experts in the relevant disciplines of thermal hydraulics, PRA, human reliability analysis (HRA), materials embrittlement effects on fracture toughness (crack initiation and arrest), fracture mechanics methodology, and fabrication-induced flaw characterization. These experts were from the NRC staff, their contractors, and representatives from the nuclear industry. These improved models have now been implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code, which is an applications tool for performing risk-informed structural integrity evaluations of embrittled RPVs subjected to transient thermal-hydraulic loading conditions. The baseline version of FAVOR (version 1.0) was released in October 2001. The updated risk-informed computational methodology in the FAVOR code is currently being applied to selected domestic commercial pressurized water reactors to evaluate the adequacy of the current regulations and to determine whether a technical basis can be established to support a relaxation of the current regulations. This paper provides a status report on the application of the updated computational methodology to a commercial pressurized water reactor (PWR) and discusses the results and interpretation of those results. It is anticipated that this re-evaluation effort will be completed in 2002.


Sign in / Sign up

Export Citation Format

Share Document