A 3d Histomorphometric Method for Analyses of Skeletal Tissue Mechanobiology

Author(s):  
Ryan E. Gleason ◽  
Kristy T. S. Palomares ◽  
Thomas A. Einhorn ◽  
Louis C. Gerstenfeld ◽  
Elise F. Morgan

Skeletal repair and regeneration involve a dynamic interplay of biological processes that result in spatially and temporally varying patterns of tissue formation and remodeling. For example, during bone fracture healing the cartilaginous callus that is formed initially in the fracture site is subsequently mineralized and remodeled to restore the original form and function to the injured bone. During much of this healing process, the fracture callus is comprised of a heterogeneous mixture of cartilage, fibrocartilage, multipotent mesenchymal tissue, and bone. Adding to this complexity, mechanical stimuli are known to influence the rate and type of tissues formed during skeletal healing [1]. Given the growing body of evidence that controlled mechanical stimulation may be used to enhance healing, it is of substantial interest to elucidate relationships between the distributions of local stresses and strains that develop within the healing region and the distribution of tissue types that form. While histomorphometry is a well established approach for characterizing the latter, it has historically been limited to analyses of a small number of two-dimensional sections of tissue. Such 2D sampling may be inadequate for quantitative characterization of the irregular geometry and heterogeneous composition of healing tissues. In this study, we report on a 3D histomorphometric method and apply this method to an in vivo model of skeletal repair [2] in which a bending stimulus delivered to a healing bone defect results in the formation of predominantly cartilage tissue, rather than bone.

2019 ◽  
Vol 3 (s1) ◽  
pp. 105-106
Author(s):  
Jeffery Jay Howard Nielsen ◽  
Stewart A. Low ◽  
Philip S. Low

OBJECTIVES/SPECIFIC AIMS: The primary objective of this study was to evaluate the performance of a bone fracture targeted systemically administrable bone anabolic as a potential therapeutic for bone fracture repair. Currently all bone fracture repair therapeutic require local administration during surgery. However, the population that need the most assistance in repair bone fractures are not eligible for surgery. So, it was our goal to design an inject-able therapeutic to assist in bone fracture repair to reduce the invasiveness. The injectable nature of it allows for repair administration of the bone anabolic and for therapeutic effect throughout the entire bone fracture healing process. Targeting it to the bone fracture site reduces the toxicity and increases the efficacy. METHODS/STUDY POPULATION: METHODS To achieve the above objective, a bone mineral-(hydroxyapatite-) targeting oligopeptide was conjugated to the non-signaling end of an engineered parathyroid hormone related protein fragment 1-46 with substitutions at Glu22,25, Leu23,28,31, Aib29, Lys26,30 (ePTHrP). The negatively charged oligopeptide has been shown to target raw hydroxyapatite with remarkable specificity, while the attached PTHrP has been demonstrated to induce sustained and accelerated bone growth under control of endogenous morphogenic regulatory factors. The conjugate’s specificity arises from the fact that raw hydroxyapatite is only exposed whenever a bone is fractured, surgically cut, grafted, or induced to undergo accelerated remodeling. The hydroxyapatite-targeted conjugate can therefore be administered systemically (i.e. without invasive surgery or localized injection) and still accumulate on the exposed hydroxyapatite at the fracture site where it accelerates the healing process Murine in vivo experiments were conducted on female Swiss Webster mice (10 per group). Femoral fractures were induced with a 3-point bending device and stabilized. Mice were dosed with 3 nmol/kg/d of targeted-ePTHrP, non-conjugated (free) ePTHrP, or saline. Following a 4-week study, fracture callus densities were measured using microCT. Canine in vivo experiments were conducted on 1-year-old male beagles. Beagles underwent a 10 mm bilateral ulnar ostectomy. Two dogs in the treatment group and Three dogs in the control group were dosed daily with either targeted-ePTHrP 0.5nmol/kg/d or saline respectively. Dogs were x-rayed weekly for the first 6 weeks and then every other week thereafter. One tailed ANOVA followed by Dunnett’s post-hoc test was used to establish significance. All animal experiments were conducted as described in approved IACUC protocols. P<0.05 was considered significant. RESULTS/ANTICIPATED RESULTS: RESULTS SECTION: In the murine studies we observed a marked increase in fracture callus size and a 2-fold increase in bone deposition was observed in the targeted-ePTHrP group over the saline group (P<0.01). A significant doubling in bone density was also observed. Targeted-ePTHrP group fractured femurs were able to achieve their pre-fracture strength as early as 3 weeks compared to 9 weeks in the saline mice representing a 66% reduction in healing time. In the canine studies, we observe a significantly higher closure of the ostectomy gap than saline controls (P<0.05). In addition, no significant differences in weight are observed in the treatment vs. saline controls. No significant difference between the control group and treatment groups was found in a histological investigation of the organs. DISCUSSION/SIGNIFICANCE OF IMPACT: DISCUSSION: Although attempts have been made in developing a systemically administered fracture therapeutic for fracture repair, i.e. teriparatide, to date, no such anabolics have been approved for this use. In these studies there is evidence that anabolic activity was occurring at the fracture site, but at a level that did not meet FDA required end-points.2 It is plausible that if sufficient drug were to be delivered to a fracture site then improved fracture repair would be possible. In previous studies, we demonstrated fracture specific accumulation bone anabolics can be achieved by modifying the drug with acidic oligopeptides.3 Here, by modifying a safe, clinically proven, parathyroid hormone receptor agonist with an acidic oligopeptide we observe improved bone deposition and strength in mice. Furthermore, when administered to canine critical sized defect ostectomies, a more relevant and difficult model, we observe improved ostectomy closure. CLINICAL RELEVANCE:: The ability to accelerate bone fracture repair is a fundamental need that has not been addressed by conventional methods. By targeting bone anabolic agents to bone fractures, we can deliver sufficient concentrations of anabolic agent to the fracture site to accelerate healing, thus avoiding surgery and any ectopic bone growth associated with locally-applied bone anabolic agents.


2018 ◽  
Vol 7 (12) ◽  
pp. 482 ◽  
Author(s):  
Agnieszka Śmieszek ◽  
Krzysztof Tomaszewski ◽  
Katarzyna Kornicka ◽  
Krzysztof Marycz

Metformin, the gold standard in type 2 diabetes treatment, is a drug with multi-faceted effects. Currently, metformin has gained much attention as an agent that may find application in regenerative medicine. In this study, we considered its pro-osteogenic function in the course of in vitro osteogenesis of multipotent stromal cells derived from rat adipose tissue (rASCs). In addition, we evaluated the effect of metformin treatment on bone metabolism in a model of cranial defect in nondiabetic rats. In vitro study showed that metformin that is introduced to the culture medium at concentration equal 500 µM may promote the differentiation of rASCs into bone-forming cells, which express mRNA and secrets proteins that are related to the functional tissue (namely, alkaline phosphatase and osteocalcin). Osteogenic effect of metformin, as determined using in vitro model, was also manifested with the formation of mineralized extracellular matrix rich calcium and phosphorous deposits. We have also found, that in undifferentiated rASCs, metformin significantly activates a critical regulatory factor for osteogenic differentiation, i.e., AMPK. Moreover, using in vivo model we showed metformin administration at a dose of 250 mg/kg/day accelerated bone healing and the formation of mature tissue at a fracture site in rat cranial defect model. The obtained results shed promising light on metformin application in regenerative orthopedics, both as an agent improving functionality of ASCs for therapeutic transplantation, as well as a medication enhancing the bone healing process.


Author(s):  
G. J. Miller ◽  
P. G. Patel ◽  
E. F. Morgan

Numerous studies have demonstrated that mechanical factors affect the healing process of skeletal tissues and can either enhance or hinder repair of orthopaedic injuries. Several mechanobiological theories have been proposed that relate specific mechanical stimuli to patterns of skeletal tissue differentiation1,2,3. However, rigorous tests of these theories have been difficult to carry out because few experimental data are available on local stress and strain magnitudes induced by mechanical stimulation of skeletal tissues in vivo.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nina Schmitz ◽  
Melanie Timmen ◽  
Katharina Kostka ◽  
Verena Hoerr ◽  
Christian Schwarz ◽  
...  

Abstract Over the last years, murine in vivo magnetic resonance imaging (MRI) contributed to a new understanding of tissue composition, regeneration and diseases. Due to artefacts generated by the currently used metal implants, MRI is limited in fracture healing research so far. In this study, we investigated a novel MRI-compatible, ceramic intramedullary fracture implant during bone regeneration in mice. Three-point-bending revealed a higher stiffness of the ceramic material compared to the metal implants. Electron microscopy displayed a rough surface of the ceramic implant that was comparable to standard metal devices and allowed cell attachment and growth of osteoblastic cells. MicroCT-imaging illustrated the development of the callus around the fracture site indicating a regular progressing healing process when using the novel implant. In MRI, different callus tissues and the implant could clearly be distinguished from each other without any artefacts. Monitoring fracture healing using MRI-compatible implants will improve our knowledge of callus tissue regeneration by 3D insights longitudinal in the same living organism, which might also help to reduce the consumption of animals for future fracture healing studies, significantly. Finally, this study may be translated into clinical application to improve our knowledge about human bone regeneration.


2012 ◽  
Vol 57 (No. 2) ◽  
pp. 77-82 ◽  
Author(s):  
F. Sabol ◽  
L. Dancakova ◽  
P. Gal ◽  
T. Vasilenko ◽  
M. Novotny ◽  
...  

The complexity of the wound healing process, which is still poorly understood, prompted us to perform an immunohistochemical investigation using rat skin as an in vivo model. Fifteen Sprague-Dawley rats were included in the experiment. Two round full thickness wounds, 4 mm in diameter, were made on the backs of all rats. Haematoxylin and eosin basic staining as well as antibodies against wide spectrum keratin, keratin 10, keratin&nbsp;14, &alpha;-smooth muscle actin, vimentin, fibronectin, collagens Type 1 and 3, and the transcription factor Sox-2 were applied to paraffin and frozen sections of skin wound specimens two, six and fourteen days after surgery, respectively. New hair follicles with Sox-2-positive cells were present after fourteen days; keratin/vimentin positivity was restricted to specimens of day two. Collagen-3 expression prevailed over collagen-1 expression at all evaluated time intervals, except in the uninjured part of the dermis. In conclusion, rat skin wound healing is a dynamic process which can serve as a model for studying phenomena such as cell-cell interactions and transitions in vivo.


Author(s):  
Michael I. Dishowitz ◽  
Miltiadis H. Zgonis ◽  
Jeremy J. Harris ◽  
Constance Ace ◽  
Louis J. Soslowsky

Rotator cuff tendon tears often require large tensions for repair [1] and these tensions are associated with poor outcomes including rerupture [2]. To address this, repairs are often augmented with collagen-based scaffolds. Microbial cellulose, produced by A. xylinum as a laminar non-woven matrix, is another candidate for repair augmentation [3]. An ideal augmentation scaffold would shield the repair site from damaging loads as they change throughout the healing process. Although the initial mechanical properties of clinically used scaffolds have been well characterized [4–6], their mechanical behavior following implantation is not known. As a result, the role of these scaffolds throughout the healing process remains unknown. Therefore, the objective of this study is to characterize the mechanical behavior of existing collagen-based scaffolds and a new, microbial cellulose scaffold over time using an in vivo model. We hypothesize that: 1) collagen-based scaffolds will show decreased stiffness (1a) and suture pullout loads (1b) over time when compared to initial values while the microbial cellulose scaffold will not; and 2) the collagen-based scaffolds will have decreased stiffness (2a) and suture pullout loads (2b) when compared to the new, microbial cellulose scaffold at all timepoints.


2009 ◽  
Vol 15 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Milos Petrovic ◽  
Dragan Mitrakovic ◽  
Branko Bugarski ◽  
Daniel Vonwil ◽  
Ivan Martin ◽  
...  

The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 ?m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain). The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10-100 ?m/s) provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.


Author(s):  
Sheeny K. Lan ◽  
Daniel N. Prater ◽  
Russell D. Jamison ◽  
David A. Ingram ◽  
Mervin C. Yoder ◽  
...  

The natural healing process cannot restore form and function to critical size bone defects without the presence of a graft to support and guide tissue regeneration [1]. Critical size bone defects in humans are typically on the order of centimeters or larger [2]. Thus, a major limitation of synthetic grafts or bone tissue engineering constructs is the lack of vascularization to support cell viability after placement in vivo [3]. Cells that participate in bone regeneration, must reside within 150–200 microns of a blood supply in order to gain proper nutrients and to eliminate waste [4]. Consequently, a tissue engineering construct of a clinically relevant size cannot rely on diffusion for transport of nutrients and waste. Previous research has shown that blood vessels can infiltrate scaffolds, but the overall process is too slow to prevent death of cells located in the center of a construct [5].


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongmei Ye ◽  
Chen Chen ◽  
Qiwen Wang ◽  
Qi Zhang ◽  
Sha Li ◽  
...  

Abstract Background As a type of high-frequency electrotherapy, a short-wave can promote the fracture healing process; yet, its underlying therapeutic mechanisms remain unclear. Purpose To observe the effect of Short-Wave therapy on mesenchymal stem cell (MSC) homing and relative mechanisms associated with fracture healing. Materials and methods For in vivo study, the effect of Short-Wave therapy to fracture healing was examined in a stabilized femur fracture model of 40 SD rats. Radiography was used to analyze the morphology and microarchitecture of the callus. Additionally, fluorescence assays were used to analyze the GFP-labeled MSC homing after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast from newborn rats simulated fracture site was first irradiated by the Short-Wave; siRNA targeting HIF-1 was used to investigate the role of HIF-1. Osteoblast culture medium was then collected as chemotaxis content of MSC, and the migration of MSC from rats was evaluated using wound healing assay and trans-well chamber test. The expression of HIF-1 and its related factors were quantified by q RT-PCR, ELISA, and Western blot. Results Our in vivo experiment indicated that Short-Wave therapy could promote MSC migration, increase local and serum HIF-1 and SDF-1 levels, induce changes in callus formation, and improve callus microarchitecture and mechanical properties, thus speeding up the healing process of the fracture site. Moreover, the in vitro results further indicated that Short-Wave therapy upregulated HIF-1 and SDF-1 expression in osteoblast and its cultured medium, as well as the expression of CXCR-4, β-catenin, F-actin, and phosphorylation levels of FAK in MSC. On the other hand, the inhibition of HIF-1α was significantly restrained by the inhibition of HIF-1α in osteoblast, and it partially inhibited the migration of MSC. Conclusions These results suggested that Short-Wave therapy could increase HIF-1 in callus, which is one of the crucial mechanisms of chemotaxis MSC homing in fracture healing.


Sign in / Sign up

Export Citation Format

Share Document