Implementation of a P-300 Brain Computer Interface for the Control of a Wheelchair Mounted Robotic Arm System

Author(s):  
Kathryn J. De Laurentis ◽  
Yael Arbel ◽  
Rajiv Dubey ◽  
Emanuel Donchin

Three decades ago, Farwell and Donchin [1] developed a computer system based on the method of electroencephalography (EEG) that enables individuals to communicate with their environment without using any neuromuscular function. This P300 BCI speller makes use of the well-studied observation that the brain reacts differently to different stimuli, based on the level of attention given to the stimulus and the specific processing triggered by the stimulus. Since this first report in 1988, several brain-computer interface (BCI) systems have been developed and constantly improved. We have previously demonstrated that the P300-BCI can control a wheelchair-mounted robotic arm (WMRA) system [2].

2019 ◽  
Vol 7 (2) ◽  
pp. 480-483
Author(s):  
Chengyu Li ◽  
Weijie Zhao

Abstract What can the brain–computer interface (BCI) do? Wearing an electroencephalogram (EEG) headcap, you can control the flight of a drone in the laboratory by your thought; with electrodes inserted inside the brain, paralytic patients can drink by controlling a robotic arm with thinking. Both invasive and non-invasive BCI try to connect human brains to machines. In the past several decades, BCI technology has continued to develop, making science fiction into reality and laboratory inventions into indispensable gadgets. In July 2019, Neuralink, a company founded by Elon Musk, proposed a sewing machine-like device that can dig holes in the skull and implant 3072 electrodes onto the cortex, promising more accurate reading of what you are thinking, although many serious scientists consider the claim misleading to the public. Recently, National Science Review (NSR) interviewed Professor Bin He, the department head of Biomedical Engineering at Carnegie Mellon University, and a leading scientist in the non-invasive-BCI field. His team developed new methods for non-invasive BCI to control drones by thoughts. In 2019, Bin’s team demonstrated the control of a robotic arm to follow a continuously randomly moving target on the screen. In this interview, Bin He recounted the history of BCI, as well as the opportunities and challenges of non-invasive BCI.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2002 ◽  
Vol 41 (04) ◽  
pp. 337-341 ◽  
Author(s):  
F. Cincotti ◽  
D. Mattia ◽  
C. Babiloni ◽  
F. Carducci ◽  
L. Bianchi ◽  
...  

Summary Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes. Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used. Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes. Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.


2013 ◽  
Vol 310 ◽  
pp. 660-664 ◽  
Author(s):  
Zi Guang Li ◽  
Guo Zhong Liu

As an emerging technology, brain-computer interface (BCI) bring us a novel communication channel which translate brain activities into command signals for devices like computer, prosthesis, robots, and so forth. The aim of the brain-computer interface research is to improve the quality life of patients who are suffering from server neuromuscular disease. This paper focus on analyzing the different characteristics of the brainwaves when a subject responses “yes” or “no” to auditory stimulation questions. The experiment using auditory stimuli of form of asking questions is adopted. The extraction of the feature adopted the method of common spatial patterns(CSP) and the classification used support vector machine (SVM) . The classification accuracy of "yes" and "no" answers achieves 80.2%. The experiment result shows the feasibility and effectiveness of this solution and provides a basis for advanced research .


Author(s):  
Abhay Patil

Abstract: There are roughly 21 million handicapped people in India, which is comparable to 2.2% of the complete populace. These people are affected by various neuromuscular problems. To empower them to articulate their thoughts, one can supply them with elective and augmentative correspondence. For this, a Brain-Computer Interface framework (BCI) has been assembled to manage this specific need. The basic assumption of the venture reports the plan, working just as a testing impersonation of a man's arm which is intended to be powerfully just as kinematically exact. The conveyed gadget attempts to take after the movement of the human hand by investigating the signs delivered by cerebrum waves. The cerebrum waves are really detected by sensors in the Neurosky headset and produce alpha, beta, and gamma signals. Then, at that point, this sign is examined by the microcontroller and is then acquired onto the engineered hand by means of servo engines. A patient that experiences an amputee underneath the elbow can acquire from this specific biomechanical arm. Keywords: Brainwaves, Brain Computer Interface, Arduino, EEG sensor, Neurosky Mindwave Headset, Robotic arm


2015 ◽  
Vol 87 (4) ◽  
pp. 1929-1937 ◽  
Author(s):  
Regina O. Heidrich ◽  
Emely Jensen ◽  
Francisco Rebelo ◽  
Tiago Oliveira

ABSTRACT This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).


Sign in / Sign up

Export Citation Format

Share Document