Estimation of In-Vivo Quadriceps Forces of the Knee: A Combined In-Vivo Patellofemoral Joint Kinematics Measurement and Finite Element Prediction

Author(s):  
Koichi Kobayashi ◽  
Guoan Li

The load transfer mechanics across the patellofemoral (PF) joint during weight-bearing conditions is important for treatment of the knee pathology, such as knee OA, ACL deficiency as well as TKA. Many studies have characterized the PF joint reaction forces using equilibriums of the quadriceps and ground reaction forces at the knee joint [1,2,3]. However, this simplification does not consider other muscle function as well as 3D knee joint contact location when calculate moment arms of the involved forces.

Author(s):  
S. C. E. Brandon ◽  
D. G. Thelen ◽  
K. J. Deluzio

Accurate prediction of knee joint contact loading during gait is important for understanding knee pathology and development of suitable clinical interventions. While many researchers have modeled the knee contact loads during level walking, these predictions have ranged from 3.4 [1] to 7 [2] times body weight. Validation of contact loads is difficult; the joint contact load depends not only on readily obtainable external kinematics and reaction forces, but also on the forces generated by muscle and other soft tissues. Recently, an instrumented tibial implant, capable of telemetrically reporting the six degree-of-freedom loading environment of the tibial plateau, was used to tune and validate an EMG-driven model of the lower extremity [3]. Recognizing the value of these in vivo data, and the limitations of existing knee models, these researchers devised the Grand Challenge Competitions to Predict In Vivo Knee Loads.


Author(s):  
A. Asadi Nikooyan ◽  
H. E. J. Veeger ◽  
P. Westerhoff ◽  
F. Graichen ◽  
G. Bergmann ◽  
...  

The Delft Shoulder and Elbow Model (DSEM), a large-scale musculoskeletal model, allows for estimation of individual muscle and joint reaction forces in the shoulder and elbow complex. Although the model has been qualitatively verified previously using EMG signals, quantitative validation has not yet been feasible. In this paper we report on the validation of the DSEM by comparing the GH-joint contact forces estimated by the DSEM with the in-vivo forces measured by a recently developed instrumented shoulder endoprosthesis, capable of measuring the glenohumeral (GH) joint contact forces in-vivo [1]. To validate the model, two patients with instrumented shoulder hemi-arthroplasty were measured. The measurement process included the collection of motion data as well as in-vivo joint reaction forces. Segment and joint angles were used as the model inputs to estimate the GH-joint contact forces. The estimated and recorded GH-joint contact forces for Range of Motion (RoM) and force tasks were compared based on the magnitude of the resultant forces. The results show that the estimated force follows the measured force for abduction and anteflexion motions up to 80 and 50 degrees arm elevations, respectively, while they show different behaviors for angles above 90 degrees (decrease is estimated but increase is measured). The DSEM underestimates the peak force for RoM (up to 38% for abduction motion and 64% for anteflexion motion), while overestimates the peak forces (up to 90%) for most directions of performing the force tasks.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1597 ◽  
Author(s):  
Saverio Affatato ◽  
Alessandro Ruggiero

Detailed knowledge about loading of the knee joint is essential for preclinical testing of total knee replacement. Direct measurement of joint reaction forces is generally not feasible in a clinical setting; non-invasive methods based on musculoskeletal modelling should therefore be considered as a valid alternative to the standards guidelines. The aim of this paper is to investigate the possibility of using knee joint forces calculated through musculoskeletal modelling software for developing an in vitro wear assessment protocol by using a knee wear simulator. In particular, in this work we preliminarily show a comparison of the predicted knee joint forces (in silico) during the gait with those obtained from the ISO 14243-1/3 and with those measured in vivo by other authors. Subsequently, we compare the wear results obtained from a knee wear joint simulator loaded by calculated forces in correspondence to the “normal gait” kinematics with those obtained in correspondence to the loads imposed by the ISO. The obtained results show that even if the predicted load profiles are not totally in good agreement with the loads deriving from ISO standards and from in vivo measurements, they can be useful for in vitro wear tests, since the results obtained from the simulator in terms of wear are in agreement with the literature data.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 55.2-56
Author(s):  
R. Raoof ◽  
C. Martin ◽  
H. De Visser ◽  
J. Prado ◽  
S. Versteeg ◽  
...  

Background:Pain is a major debilitating symptom of knee osteoarthritis (OA). However, the extent of joint damage in OA does not correlate well with the severity of pain. The mechanisms that govern OA pain are poorly understood. Immune cells infiltrating nervous tissue may contribute to pain maintenance.Objectives:Here we investigated the role of macrophages in the initiation and maintenance of OA pain.Methods:Knee joint damage was induced by an unilateral injection of mono-iodoacetate (MIA) or after application of a groove at the femoral condyles of rats fed on high fat diet. Pain-like behaviors were followed over time using von Frey test and dynamic weight bearing. Joint damage was assessed by histology. Dorsal root ganglia (DRG) infiltrating immune cells were assessed over time using flow cytometry. To deplete monocytes and macrophages, Lysmcrex Csfr1-Stop-DTR were injected intrathecal or systemically with diptheria toxin (DT).Results:Intraarticular monoiodoacetate injection induced OA and signs of persistent pain, such as mechanical hyperalgesia and deficits in weight bearing. The persisting pain-like behaviors were associated with accumulation of F4/80+macrophages with an M1-like phenotype in the lumbar DRG appearing from 1 week after MIA injection, and that persisted till at least 4 weeks after MIA injection. Macrophages infiltrated DRG were also observed in the rat groove model of OA, 12 weeks after application of a groove at the femoral condyles. Systemic or local depletion of DRG macrophages during established MIA-induced OA completely ablated signs of pain, without affecting MIA-induced knee pathology. Intriguingly when monocytes/macrophages were depleted prior to induction of osteoarthritis, pain-like behaviors still developed, however these pain-like behaviors did not persist over time.In vitro,sensory neurons innervating the affected OA joint programmed macrophages into a M1 phenotype. Local repolarization of M1-like DRG macrophages towards M2 by intrathecal injection of M2 macrophages or anti-inflammatory cytokines resolved persistent OA-induced pain.Conclusion:Overall we show that macrophages infiltrate the DRG after knee damage and acquire a M1-like phenotype and maintain pain independent of the lesions in the knee joint. DRG-infiltrating macrophages are not required for induction of OA pain. Reprogramming M1-like DRG-infiltrating macrophages may represent a potential strategy to treat OA pain.Acknowledgments:This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No 814244 and No 642720. Dutch Arthritis SocietyDisclosure of Interests:Ramin Raoof: None declared, Christian Martin: None declared, Huub de Visser: None declared, Judith Prado: None declared, Sabine Versteeg: None declared, Anne Heinemans: None declared, Simon Mastbergen: None declared, Floris Lafeber Shareholder of: Co-founder and shareholder of ArthroSave BV, Niels Eijkelkamp: None declared


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2960 ◽  
Author(s):  
Ross H. Miller ◽  
Rebecca L. Krupenevich ◽  
Alison L. Pruziner ◽  
Erik J. Wolf ◽  
Barri L. Schnall

BackgroundIndividuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA) in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss.MethodsCross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery) including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years) were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF) were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW).ResultsPeak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s) vs. controls (157% BW, 1,985% BW/s), with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters.DiscussionAssuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


Author(s):  
Hannah J. Lundberg ◽  
Markus A. Wimmer

Detailed knowledge of in vivo knee contact forces and the contribution from muscles, ligaments, and other soft-tissues to knee joint function are essential for evaluating total knee replacement (TKR) designs. We have recently developed a mathematical model for calculating knee joint contact forces using parametric methodology (Lundberg et al., 2009). The numerical model calculates a “solution space” of three-dimensional contact forces for both the medial and lateral compartments of the tibial plateau. The solution spaces are physiologically meaningful, and represent the result of balancing the external moments and forces by different strategies.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Jessica C. Küpper ◽  
Ion Robu ◽  
Richard Frayne ◽  
Janet L. Ronsky

When magnetic resonance (MR) images are collected while applying a load to the knee joint, additional information about the joint response to loading can be acquired such as cartilage deformation, whole joint and ligament stiffness, or physiological estimates of weight-bearing joint positions. To allow load application and controlled lower limb movement in supine MR imaging, the knee loading apparatus (KLA) was designed to apply safe and physiologically relevant controlled loads to the knee joint, position the knee through a range of flexion angles, and operate successfully in a magnetic environment. The KLA is composed of three main components: a remotely operated custom hydraulic loading system, a logic system that interfaces with the user, and modular non ferromagnetic positioning frames. Three positioning frames are presented for application to anterior tibial loading, tibiofemoral compression, and patellofemoral compression at multiple knee flexion angles. This system design makes improvements over current devices. Safe remotely applied loads (hydraulic loading system) can be applied by either subject or tester and in multiple locations simultaneously. Additionally, loads can be altered at any time in a continuous manner without electrical interference. Transportability was improved due to a smaller footprint. The KLA has the flexibility to attach any positioning frame with many possible loading scenarios without changing the loading mechanism or logic systems, and allows force values over time to be output rather than estimated. An evaluation of the load repeatability (within 7% of applied load) and accuracy (0.5–14.9%) demonstrates the feasibility of this design for investigations into in vivo knee joint responses to loading.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hunter J. Bennett ◽  
Kevin A. Valenzuela ◽  
Scott K. Lynn ◽  
Joshua T. Weinhandl

Abstract Alterations of foot rotation angles have successfully reduced external knee adduction moments during walking and running. However, reductions in knee adduction moments may not result in reductions in knee joint reaction forces. The purpose of this study was to examine the effects of internal and external foot rotation on knee, hip, and ankle joint reaction forces during running. Motion capture and force data were recorded of 19 healthy adults running at 3.35 m/s during three conditions: (1) preferred (normal) and with (2) internal and (3) external foot rotation. Musculoskeletal simulations were performed using opensim and the Rajagopal 2015 model, modified to a two degree-of-freedom knee joint. Muscle excitations were derived using static optimization, including muscle physiology parameters. Joint reaction forces (i.e., the total force acting on the joints) were computed and compared between conditions using one-way analyses of variance (ANOVAs) via statistical parametric mapping (SPM). Internal foot rotation reduced resultant hip forces (from 18% to 23% stride), while external rotation reduced resultant ankle forces (peak force at 20% stride) during the stance phase. Three-dimensional and resultant knee joint reaction forces only differed at very early and very late stance phase. The results of this study indicate, similar to previous findings, that reductions in external knee adduction moments do not mirror reductions in knee joint reaction forces.


Sign in / Sign up

Export Citation Format

Share Document