scholarly journals Adhesive Signature-Based, Label-Free Isolation of Human Pluripotent Stem Cells

Author(s):  
Ankur Singh ◽  
Shalu Suri ◽  
Ted T. Lee ◽  
Jamie M. Chilton ◽  
Steve L. Stice ◽  
...  

Generation of human induced pluripotent stem cells (hiPSCs) from fibroblasts and other somatic cells represents a highly promising strategy to produce auto- and allo-genic cell sources for therapeutic approaches as well as novel models of human development and disease1. Reprogramming protocols involve transduction of the Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc into the parental somatic cells, followed by culturing the transduced cells on mouse embryonic fibroblast (MEF) or human fibroblast feeder layers, and subsequent mechanical dissociation of pluripotent cell-like colonies for propagation on feeder layers1, 2. The presence of residual parental and feeder-layer cells introduces experimental variability, pathogenic contamination, and promotes immunogenicity3. Similar to human embryonic stem cells (hESCs), reprogrammed hiPSCs suffer from the unavoidable problem of spontaneous differentiation due to sub-optimal feeder cultures4, growth factors5, and the feeder-free substrate6. Spontaneously differentiated (SD)-hiPSCs display reduced pluripotency and often contaminate hiPSC cultures, resulting in overgrowth of cultures and compromising the quality of residual pluripotent stem cells5. Therefore, the ability to rapidly and efficiently isolate undifferentiated hiPSCs from the parental somatic cells, feeder-layer cells, and spontaneously differentiated cells is a crucial step that remains a bottleneck in all human pluripotent stem cell research.

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ricardo Antonio Rosselló ◽  
Chun-Chun Chen ◽  
Rui Dai ◽  
Jason T Howard ◽  
Ute Hochgeschwender ◽  
...  

Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range.


2010 ◽  
Vol 19 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Huseyin Sumer ◽  
Karen L. Jones ◽  
Jun Liu ◽  
Corey Heffernan ◽  
Pollyanna A. Tat ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina Seiler ◽  
Motokazu Tsuneto ◽  
Fritz Melchers

We review here our experiences with thein vitroreprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequentin vitrodevelopment of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, thein vitroreprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


Acta Naturae ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 68-74 ◽  
Author(s):  
E. S. Philonenko ◽  
M. V. Shutova ◽  
Е. А. Khomyakova ◽  
Е. М. Vassina ◽  
О. S. Lebedeva ◽  
...  

Induced pluripotent stem cells (iPSCs) have the capacity to unlimitedly proliferate and differentiate into all types of somatic cells. This capacity makes them a valuable source of cells for research and clinical use. However, the type of cells to be reprogrammed, the selection of clones, and the various genetic manipulations during reprogramming may have an impact both on the properties of iPSCs and their differentiated derivatives. To assess this influence, we used isogenic lines of iPSCs obtained by reprogramming of three types of somatic cells differentiated from human embryonic stem cells. We showed that technical manipulations in vitro, such as cell sorting and selection of clones, did not lead to the bottleneck effect, and that isogenic iPSCs derived from different types of somatic cells did not differ in their ability to differentiate into the hematopoietic and neural directions. Thus, the type of somatic cells used for the generation of fully reprogrammed iPSCs is not important for the practical and scientific application of iPSCs.


Author(s):  
John C. Lucchesi

Four core transcription factors known to maintain the pluripotent state in embryonic stem cells (ESCs)—Oct4, Sox2, Klf4 and c-Myc—were used to induce pluripotent stem cells in adult-derived fibroblasts. Induced pluripotent stem cells (iPSCs), like ESCs, have less condensed and more transcriptionally active chromatin than differentiated cells. The number of genes with bivalent promoter marks increases during reprogramming, reflecting the switch of differentiation-specific active genes to an inactive, but poised, status. The levels of DNA methyl transferases and demethylases are increased, underlying the changes in the pattern of DNA methylation that occur late during reprogramming. The potential therapeutic applications of iPSCs include reprogramming a patient’s own cells to avoid the problem of rejection following injection to restore tissue or organ function. iPSCs derived from individuals at risk of developing late-onset neurological diseases could be differentiated in culture to predict the future occurrence of the disease. Caveats involve the fact that long-term culturing often results in genomic mutations that may, by chance, involve tumor suppressors or oncogenes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4792-4792
Author(s):  
Christophe Sandt ◽  
Olivier Feraud ◽  
Ali G. Turhan ◽  
Paul Dumas ◽  
Annelise Bennaceur-Griscelli

Abstract Abstract 4792 Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However, research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (hESC). In this work, we report that the use of the Synchrotron-based FTIR microspectroscopy allows following the infrared spectral modification of the differentiated cells during the reprogramming process as well as the comparison between iPSC with hESC. The model that we studied consisted on the use of human ES cell line H9 grown on murine embryonic fibroblasts in the presence of bFGF. We have generated mesenchymal stem cells from the H9 cell line (H9-MSC) and we used them to generate iPSC (iPSC-H9) by the enforced expression of pluripotency genes Oct4, Sox2, Lin28 and Nanog. We have also followed the same approach on murine cells by generating murine iPSC from murine ES cells by retrovirus mediated gene transfer of Oct4, Sox2, c-Myc and Klf4. iPSC were characterized by expression of pluripotency markers, and teratoma assays. Infrared Spectral fingerprints of the original H9, MSC-H9 and iPSC-H9 as well as differentiated murine fibroblasts and murine iPSC were acquired at sub-cellular resolution using a synchrotron-powered infrared microscope. In murine system, the spectral signature of iPSC has been compared to that of D3, a well-characterized murine ES cell line. The spectral signature of iPSC and ESC displays a marked difference with those of the differentiated cells used before reprogrammation regardless the origin of the target cell (mesenchymal stem cells or murine fibroblasts). We unambiguously demonstrate for the first time to our knowledge, that the human and murine iPSC retrieve the same chemical composition with an indistinguishable spectral signature from their embryonic stem cells counterparts. Importantly, the spectral signatures were found to be specific to each of the cell line, as evidenced using pattern recognition methods and illustrated the genetic biodiversity of each iPSC and ESC. Thus, in addition to the classical pluripotency markers, FTIR microspectroscopy signature could be a rapid methodology to evaluate the pluripotency after somatic cell reprogramming. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pengfei Ji ◽  
Sasicha Manupipatpong ◽  
Nina Xie ◽  
Yujing Li

Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.


Sign in / Sign up

Export Citation Format

Share Document