Change in Mechanical Response of Arterial Elastin due to Glycation

Author(s):  
Beth Stephen ◽  
Theresa A. Good ◽  
L. D. Timmie Topoleski

Collagen and elastin are the primary load-bearing components of arteries. Elastin is a low strength, highly elastic, fibrous material and collagen is a stiffer material, generally present as wavy fibers when unstretched. Together, they account for the material response of arteries under tensile load. Arteries, and other soft tissues, exhibit a two-part material response to tensile load. There is an initial low stiffness response at low stretch followed by a high stiffness response at higher stretch. It has been proposed that the low stiffness response is dominated by the elastin in the material and the high stiffness response is dominated by collagen [1]. The elastin accounts for the initial low stiffness response of the material, until the wavy collagen fibers straighten and become engaged, at which point the material transitions to its higher stiffness response. It is important to understand the role of the individual collagen and elastin components and how they contribute to the overall mechanical response of the arteries. Further, it is important to understand how specific biochemical processes that occur with age and disease affect the mechanical response of the individual collagen and elastin components and consequently the overall mechanical response of the arteries. This knowledge will increase our understanding of arterial mechanical response and how this response changes arterial function in health and disease.

Author(s):  
Lijuan Zhang ◽  
Spencer P. Lake ◽  
Victor K. Lai ◽  
Victor H. Barocas ◽  
Mark S. Shephard

The mechanical properties of soft connective tissues are governed by their collagen fiber network and surrounding non-fibrillar matrix (e.g., proteoglycans, cells, elastin, etc.). In order to understand how healthy tissues function, and how properties change in injury and disease, it is necessary to quantify the mechanical response of both the collagen network and the non-fibrillar matrix (NFM), as well as the nature of the interaction between these tissue constituents. Using collagen-agarose co-gels as a simple experimental tissue analog system, we have demonstrated how NFM contributes to the mechanical and organizational properties of soft tissues in indentation and tension [1–2]. Furthermore, we used a network-based microscale model to examine how specific NFM properties alter the response of fiber-matrix composites under load [3]. This model fit our experimental data well and provided insight into the role of NFM in tensile mechanics. Since it was constructed according to the conventional approach of superposition of the two constituents (collagen network and NFM), however, the model could not specifically examine local interactions between collagen fibers and the surrounding NFM, which could be critical in assessing tissue damage or cell-matrix interactions. Therefore, we developed and evaluated a fiber-matrix modeling scheme to characterize the microstructural interactions between tissue constituents, as well as to quantify the role of individual tissue components in the behavior of soft tissues under tensile load. For validation, the new model (‘coupled’) was compared to our previous model (‘parallel’) and to experimental co-gel data.


Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


2012 ◽  
Vol 730-732 ◽  
pp. 1006-1011
Author(s):  
Ricardo Simões ◽  
Júlio C. Viana ◽  
Gustavo R. Dias ◽  
António M. Cunha

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers, being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 747 ◽  
Author(s):  
Lola Corzo ◽  
Lucía Fernández-Novoa ◽  
Iván Carrera ◽  
Olaia Martínez ◽  
Susana Rodríguez ◽  
...  

The investigation of new alternatives for disease prevention through the application of findings from dietary and food biotechnology is an ongoing challenge for the scientific community. New nutritional trends and the need to meet social and health demands have inspired the concept of functional foods and nutraceuticals which, in addition to their overall nutritional value, present certain properties for the maintenance of health. However, these effects are not universal. Nutrigenetics describes how the genetic profile has an impact on the response of the body to bioactive food components by influencing their absorption, metabolism, and site of action. The EbioSea Program, for biomarine prospection, and the Blue Butterfly Program, for the screening of vegetable-derived bioproducts, have identified a new series of nutraceuticals, devoid of side effects at conventional doses, with genotype-dependent preventive and therapeutic activity. Nutrigenomics and nutrigenetics provide the opportunity to explore the inter-individual differences in the metabolism of and response to nutrients, achieving optimal results. This fact leads to the concept of personalized nutrition as opposed to public health nutrition. Consequently, the development and prescription of nutraceuticals according to the individual genetic profile is essential to improve their effectiveness in the prevention and natural treatment of prevalent diseases.


Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 802
Author(s):  
Andrea Piccioni ◽  
Laura Franza ◽  
Vanessa Vaccaro ◽  
Angela Saviano ◽  
Christian Zanza ◽  
...  

The microbiota is the set of commensal microorganisms, residing in the organism, helping proper functioning of organs and systems. The role that the microbiota plays in maintaining the health of vertebrates is widely accepted, particularly in the gastrointestinal system, where it is fundamental for immunity, development, and conversion of nutrients. Dysbiosis is an alteration of the microbiota which refers to a disturbed balance, which can cause a number of pathologies. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. In particular, Lactobacilli are a group of Gram-positive bacteria, which are able to produce lactic acid through glucose metabolism. They are present in different microenvironments, ranging from the vagina, to the mouth, to different tracts of the small intestine. In the present review, we will discuss the use of Limosilactobacillus in human health in general and more specifically in diverticulitis. In particular we analyze the role of Limosilactobacillus reuteri and its anti-inflammatory action. For this review, articles were identified using the electronic PubMed database through a comprehensive search, conducted by combining key terms such as “diverticulitis”, “Limosilactobacillus reuteri”, “human health and disease”, “probiotics”. We selected all the articles published in the last 10 years and screened 1017 papers. Articles referenced in the screened papers were evaluated if considered interesting for our topic. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. The importance of probiotics in treating diverticular disease and acute diverticulitis can be further understood if taking into consideration some pathophysiological aspects, associated to the microbiota. L. reuteri plays an important role in human health and disease. The effectiveness of L. reuteri in stimulating a correct bowl motility partly explains its effectiveness in treating diverticulitis. The most important action of L. reuteri is probably its immunomodulating activity. Levels of IL-6, IL-8, and Tumor necrosis factor (TNF-alpha) are reduced after supplementation with different strands of Lactobacilli, while T-regulatory cells increase in number and activity. Anyway, new mechanisms of action of probiotics come to light from the many investigations currently taking place in numerous centres around the world and to improve how exactly probiotic administration could make the difference in the management of diverticular disease and acute diverticulitis.


2004 ◽  
Vol 29 (3) ◽  
pp. 264-273 ◽  
Author(s):  
Howard J. Green

Exercise intolerance is a condition commonly experienced by both the healthy and those with disease. Yet we have only a limited understanding of the underlying mechanisms and, consequently, the management of this condition. In this Symposium, a major objective was to address the role of the muscle cell in weakness and fatigue. We have focused on addressing the advances made in characterizing the basis of muscle cell contractility with particular respect to the processes and proteins involved in excitation and contraction, and how these processes can be modified during repetitive activity. Three reviews are provided on this subject. Each addresses a specific link in the cascade of events from neural activation of the muscle to the generation of force. In the first review the processes involved in signal transduction in the sarcolemma and T-tubule, and which regulate membrane excitability, are examined. The second review analyzes the sarcoplasmic reticulum regulation of the intracellular messenger that controls the myofibrillar complex, namely free calcium. The final review in this series deals with the events regulating actin-myosin behaviour and the mechanical response. All reviews place special emphasis on how different sites can be modified by repetitive activity and, as a consequence, how they can represent a potential source of fatigue. Since it is important to understand the nature, manifestations, and measurement of weakness and fatigue, a comprehensive review on these topics is also provided. Key words: weakness, muscle, measurement, excitation, contraction


Author(s):  
Michael Kuhn ◽  
Kazuko Fuchi ◽  
Giorgio Bazzan ◽  
Michael J. Durstock ◽  
James J. Joo ◽  
...  

Origami, the ancient art of paper folding, has recently garnered attention from the scientific community for its capacity for unique 2D – 3D shape change and programmable mechanical properties. Application areas of such properties include packaging, self-assembly, shock absorption and deployable structures. Recent studies have highlighted the role of the folded geometry to regulate the mechanical response of the origami structures, such as the increased compression stiffness of origami tubes or the tunable in-plane stiffness through select inversion of bi-stable fold vertices. In addition to geometric re-enforcement, the mechanical response of an origami structure can also be programmed through spatial patterning of the individual fold line stiffnesses. However, the coupling between the geometric and material stiffening design spaces for origami structures is poorly understood and design rules are needed to guide the use of material stiffening to enhance or mitigate a geometric stiffening effect. In this computational study, a modal analysis of a corrugated fold with varying degrees of pre-fold and different sets of fold stiffness distributions is evaluated to highlight the interaction between geometric and material stiffness mechanisms.


Author(s):  
Victor K. Lai ◽  
Spencer P. Lake ◽  
Bumjun Kim ◽  
Emily M. Weiss ◽  
Robert T. Tranquillo ◽  
...  

Collagen gel tissue-equivalents (TEs), which are simple model tissues with tunable properties, have been used to explore many properties of soft tissues, such as how structural and compositional properties affect mechanical function [1–4]. One aspect not captured in previous TE formulations is residual stress due to interactions among components, which has an important functional role in many tissues (e.g., blood vessels [5], ligaments [6], annulus fibrosus [7]). Since the in vivo stress state of native tissues is not easily replicated in TE fabrication, a different method for “pre-stressing” collagen networks of TEs was necessary. To this end, co-gel TEs were fabricated by adding hyaluronic acid (HA) to reconstituted Type-I collagen (Col) gels. When placed in solutions of varying osmolarity, HA-Col TEs swell as the HA binds water, which in turn will stretch (and stress) the collagen network. In this way, TEs with residual stress (i.e., pre-stressed collagen fibers) can be fabricated and evaluated in order to elucidate relationships between residual stress and functional properties. Therefore, the goals of the present study were to fabricate HA-Col TEs, make initial measurements of their swelling properties, and quantify the mechanical response and changes in microstructural organization under applied tensile load.


2020 ◽  
Vol 27 ◽  
pp. 22-31
Author(s):  
Michael V. Swain

This paper will focus on the role of fluids on the indentation deformation response of tooth and eye tissues. All natural biological materials contain fluid and function in a fluidic environment, which plays a critical role in responding to loading events as well as tissue nutrition. The location of this fluid varies and is considered as both bound and mobile with much of it located in cell compartments that are also able to respond directly to loading. The extent of the fluid content varies from less than 10 % in the case of the highly mineralised enamel to more than 80 % in the case of soft eye tissues. The role of the fluid and its response during loading is also complicated by the hierarchical structure of biological tissues, be they mineralised or not. The mechanisms by which the presence of fluid in these materials influences the mechanical response is still poorly understood and has not been systematically investigated. The present paper presents data generated over many years on both the above biological tissues and attempts to present indications as to the mechanism(s) by which the presence of fluid contributes to the deformation. The situation associated with contact loading with the presence of mobile fluid in the tissues results in a more complex situation than the classic elastic-plastic contact situation, but the latter still forms the basis for much of the analysis of instrumented indentation force-displacement load-unloading curves using various shapes of indenters, especially for mineralised structures. In the case of soft tissues the absence of agreed protocols for interpretation of force-displacement-time responses is restricting clinical/biological applications.


2011 ◽  
Vol 286 (12) ◽  
pp. 9929-9934 ◽  
Author(s):  
Andrea L. Portbury ◽  
Monte S. Willis ◽  
Cam Patterson

Proteolysis within the cardiac sarcomere is a constantly evolving area of research. Three major pathways of proteolysis have been identified as being active within the cardiac sarcomere, namely the ubiquitin-proteasome system, autophagy, and the calpain system. The role of ubiquitin-proteasome system-mediated proteolysis in cardiovascular health and disease has been known for some time; however, it is now apparent that other proteolytic systems also aid in the stabilization of cardiac sarcomere structure and function. This minireview focuses on the individual as well as cooperative involvement of each of these three major pathways of proteolysis within the cardiac sarcomere.


Sign in / Sign up

Export Citation Format

Share Document