bioactive food components
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Naoki Harada ◽  
Mai Okuyama ◽  
Yoshiaki Teraoka ◽  
Yumi Arahori ◽  
Yoh Shinmori ◽  
...  

AbstractThe identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.


Author(s):  
Prem Lal ◽  
Remya Ramachandran ◽  
P. T. James ◽  
Rajeevan K. ◽  
Aju Ravindran ◽  
...  

Nutrigenomics deals with the effect of foods and food constituents on gene expression. It is a new concept in disease prevention and cure. Nutrigenomics conveys how nutrients influence our body to express genes, whereas nutrigenetics refers to how our body responds to nutrients. The various bioactive food components can alter the gene expression mechanisms. But our actual knowledge is so insufficient that the only use of such information may help to satisfy our imagination. If science could arrive at some more precise facts, that would have vast applications in medicine.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3157
Author(s):  
Hammad Ullah ◽  
Anna De Filippis ◽  
Alessandra Baldi ◽  
Marco Dacrema ◽  
Cristina Esposito ◽  
...  

The pivotal role of childhood nutrition has always roused a growing interest from the scientific community. Plant extracts and bioactive dietary components play a significant role in the maintenance of human health and wellness, with the potential to modulate risk factors and manage symptoms for a large number of common childhood disorders such as memory impairment, respiratory illnesses, gastrointestinal disorders, metabolic derangements, and pathologies related to the oral cavity. This review is designed to highlight the health benefits of botanical extracts and bioactive dietary components in children as evidenced by clinical trials, considering their safety with regards to childhood sensibilities. The supplementation of children with the herbal extracts or bioactive components mentioned in this review leads to the conclusion that they are useful for treating various ailments, with no serious adverse events being reported. However, for the limited number of investigations specifically focused on the safety of such products in children, time is needed to expand the literature data covering the safety of childhood supplementation with botanical extract and bioactive food components.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4502
Author(s):  
Seog Young Kang ◽  
Dongwon Hwang ◽  
Soyoung Shin ◽  
Jinju Park ◽  
Myoungchan Kim ◽  
...  

Gastric cancer, also known as stomach cancer, is a cancer that develops from the lining of the stomach. Accumulated evidence and epidemiological studies have indicated that bioactive food components from natural products play an important role in gastric cancer prevention and treatment, although its mechanism of action has not yet been elucidated. Particularly, experimental studies have shown that natural bioactive food products display a protective effect against gastric cancer via numerous molecular mechanisms, such as suppression of cell metastasis, anti-angiogenesis, inhibition of cell proliferation, induction of apoptosis, and modulation of autophagy. Chemotherapy remains the standard treatment for advanced gastric cancer along with surgery, radiation therapy, hormone therapy, as well as immunotherapy, and its adverse side effects including neutropenia, stomatitis, mucositis, diarrhea, nausea, and emesis are well documented. However, administration of naturally occurring bioactive phytochemical food components could increase the efficacy of gastric chemotherapy and other chemotherapeutic resistance. Additionally, several studies have suggested that bioactive food components with structural stability, potential bioavailability, and powerful bioactivity are important to develop novel treatment strategies for gastric cancer management, which may minimize the adverse effects. Therefore, the purpose of this review is to summarize the potential therapeutic effects of natural bioactive food products on the prevention and treatment of gastric cancer with intensive molecular mechanisms of action, bioavailability, and safety efficacy.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1965
Author(s):  
Uzma Sadiq ◽  
Harsharn Gill ◽  
Jayani Chandrapala

Bioactive food components have potential health benefits but are highly susceptible for degradation under adverse conditions such as light, pH, temperature and oxygen. Furthermore, they are known to have poor solubilities, low stabilities and low bioavailabilities in the gastrointestinal tract. Hence, technologies that can retain, protect and enable their targeted delivery are significant to the food industry. Amongst these, microencapsulation of bioactives has emerged as a promising technology. The present review evaluates the potential use of casein micelles (CMs) as a bioactive delivery system. The review discusses in depth how physicochemical and techno-functional properties of CMs can be modified by secondary processing parameters in making them a choice for the delivery of food bioactives in functional foods. CMs are an assembly of four types of caseins, (αs1, αs2, β and κ casein) with calcium phosphate. They possess hydrophobic and hydrophilic properties that make them ideal for encapsulation of food bioactives. In addition, CMs have a self-assembling nature to incorporate bioactives, remarkable surface activity to stabilise emulsions and the ability to bind hydrophobic components when heated. Moreover, CMs can act as natural hydrogels to encapsulate minerals, bind with polymers to form nano capsules and possess pH swelling behaviour for targeted and controlled release of bioactives in the GI tract. Although numerous novel advancements of employing CMs as an effective delivery have been reported in recent years, more comprehensive studies are required to increase the understanding of how variation in structural properties of CMs be utilised to deliver bioactives with different physical, chemical and structural properties.


2021 ◽  
pp. 12-22
Author(s):  
Kristyna Ruzickova ◽  
Maja Leitgeb

Cherries contain significant amounts of important nutrients and bioactive food components including fibre, polyphenols, carotenoids, vitamin C, potassium. They are also good source of tryptophan, serotonin, and melatonin. Beside the fact that cherries are considered as an excellent source of numerous nutrients and they also present a low caloric content. These facts lead to their increasing popularity in the human diet. Numerous studies suggest that their regular consumption has a positive effect on health and the well-being of individuals. Another bioactive food components found in cherries are enzymes. The interest in research about enzymes in cherries is not so significant as for other compounds like polyphenols or vitamins. However, number of studies were carried out to characterise enzymes and their function in cherries especially with relation to extending their shelf life. The aim of this work is to give a brief overview of latest research on browning enzymes, softening enzymes and glutathione S-transferase.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3898
Author(s):  
Jasminka Z. Ilich

As more insight is gained into personalized health care, the importance of personalized nutritional and behavioral approaches is even more relevant in the COVID-19 era, in addition to the need for further elucidation regarding several diseases/conditions. One of these concerning body composition (in this context; bone, lean and adipose tissue) is osteosarcopenic adiposity (OSA) syndrome. OSA occurs most often with aging, but also in cases of some chronic diseases and is exacerbated with the presence of low-grade chronic inflammation (LGCI). OSA has been associated with poor nutrition, metabolic disorders and diminished functional abilities. This paper addresses various influences on OSA and LGCI, as well as their mutual action on each other, and provides nutritional and behavioral approaches which could be personalized to help with either preventing or managing OSA and LGCI in general, and specifically in the time of the COVID-19 pandemic. Addressed in more detail are nutritional recommendations for and roles of macro- and micronutrients and bioactive food components; the microbiome; and optimal physical activity regimens. Other issues, such as food insecurity and nutritional inadequacy, circadian misalignment and shift workers are addressed as well. Since there is still a lack of longer-term primary studies in COVID-19 patients (either acute or recovered) and interventions for OSA improvement, this discussion is based on the existing knowledge, scientific hypotheses and observations derived from similar conditions or studies just being published at the time of this writing.


Sign in / Sign up

Export Citation Format

Share Document