Active Twist Rotor for Wind Tunnel Investigations

Author(s):  
Johannes Riemenschneider ◽  
Steffen Opitz ◽  
Martin Schulz ◽  
Volker Plaßmeier

This paper describes the design and manufacturing of active twist rotor blades for the use as secundary control of a helicopter main rotor. These blades have been developed at the DLR in Braunschweig, Germany over the last years. Special features of the blade are the capability to twist individual sections of the blade. It is planned to equip the blade so that the following test methods can be applied: strain gauges and SPR for deformations, optical measurements as a reference of the blade tip twist and pressure sensors in certain sections. I order to reduce the complexity of the blade/rotor shaft interface, blade integrated amplifiers for the strain gauge bridges have been developed and teste. Right now a set of six instrumented blades is being built, in order to test a four bladed rotor in a wind tunnel in 2012.

1993 ◽  
Vol 115 (1) ◽  
pp. 189-196 ◽  
Author(s):  
A. P. Kurkov ◽  
O. Mehmed

The paper describes a nonintrusive optical method for measuring flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime the flutter exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.


Author(s):  
Anatole P. Kurkov ◽  
Oral Mehmed

The paper describes a nonintrusive optical method for measuring flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime the flutter exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.


2020 ◽  
Vol 65 (4) ◽  
pp. 1-14
Author(s):  
Xing Wang ◽  
Yong Su Jung ◽  
James Baeder ◽  
Inderjit Chopra

To expand the cruise speed of a compound helicopter, alleviating the compressibility effects on the advancing side with reduced rotor RPM is proved to be an effective design feature, which results in high advance ratio flight regime. To investigate the aerodynamic phenomena at high advance ratios and provide data for the validation of analytical tools, a series of wind tunnel tests were conducted progressively in the Glenn L. Martin Wind Tunnel with a 33.5-inch radius fourbladed articulated rotor. In a recent wind tunnel test, the rotor blades were instrumented with pressure sensors and strain gauges at 30% radius, and pressure data were acquired to calculate the sectional airloads by surface integration up to an advance ratio of 0.8. The experimental results of rotor performance, control angles, blade airloads, and structural loads were compared with the predictions of comprehensive analysis and computational fluid dynamics (CFD) analysis coupled with computational structural dynamics (CSD) structural model. The paper focuses on the data correlation between experimental pressure, airload, and structural load data and the CFD/CSD predicted results at various collective and shaft tilt angles. Overall, the data correlation was found satisfactory, and the study provided some insights into the aerodynamic mechanisms that affect the rotor airload and performance, in particular the mechanisms of backward shaft tilt, the effect of hub/shaft wake, and the formation of dynamic stall in the reverse flow region.


Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116° turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83 × 105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required free-stream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


Transport ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Andrejs Kovalovs ◽  
Evgeny Barkanov ◽  
Sergejs Gluhihs

The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC) actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D‐spar made of UD GFRP, skin made of +450/‐450 GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam ‐ by 3D 20‐node structural solid elements SOLID 186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.


Author(s):  
Sergey R. Heister ◽  
Thai T. Nguyn

Introduction. The basis for solving the problem of aircraft recognition is the formation of radar portraits, reflecting the constructive features of aerial vehicles. Portraits, which are radar images of the propellers of aerial vehicles, have high informativeness. These images allow us to distinguish the number and relative position of the propeller blades, as well as the direction of its rotation. The basis for obtaining such images are mathematical models of reflected signals. Objective. The aim of this paper is to develop mathematical models of the radar signal reflected from the helicopter main rotor applied to inverse synthetic aperture radar (ISAR). Methods and materials. ISAR processing is used to produce a radar image of a propeller in a radar with a monochromatic probing signal. The propeller blades in the models are approximated by different geometric shapes. The models used to describe the reflection from the propellers of helicopters and fixed-wing aircraft have significant differences. In the process of moving each blade of the helicopter main rotor makes characteristic movements (flapping, dragging, feathering), as well as bends in a vertical plane. Such movements and bendings of the blades are influence the phase of the signal reflected from the main rotor. It is necessary to take the phase change of the reflected signal into account as accurately as possible when developing an ISAR algorithm for imaging the main rotor. Results. We found that in the centimeter wavelength range the mathematical model of the signal reflected from the helicopter main rotor as a system of blades is most accurately described by representing each blade with a set of isotropic reflectors located on the main rotor’s blade leading and trailing edges. Taking into account the flapping movements and curved shapes of the blades in the model allows you to get as close as possible to the features of the real signal. Conclusion. The developed model which takes into account the flapping movements and bends of the helicopter main rotor blades can be used to improve the ISAR algorithms providing the radar imaging of aerial vehicles.


Author(s):  
Roger W. Ainsworth ◽  
John L. Allen ◽  
J. Julian M. Batt

The advent of a new generation of transient rotating turbine simulation facilities, where engine values of Reynolds and Mach number are matched simultaneously together with the relevant rotational parameters for dimensional similitude (Dunn et al [1988], Epstein et al [1984]. Ainsworth et al [1988]), has provided the stimulus for developing improved instrumentation for investigating the aerodynamic flows in these stages. Much useful work has been conducted in the past using hot-wire and laser anemometers. However, hot-wire anemometers are prone to breakage in the high pressure flows required for correct Reynolds numbers, Furthermore some laser techniques require a longer runtime than these transient facilites permit, and generally yield velocity information only, giving no data on loss production. Advances in semiconductor aerodynamic probes are beginning to fulfil this perceived need. This paper describes advances made in the design, construction, and testing of two and three dimensional fast response aerodynamic probes, where semiconductor pressure sensors are mounted directly on the surface of the probes, using techniques which have previously been successfully used on the surface of rotor blades (Ainsworth, Dietz and Nunn [1991]). These are to be used to measure Mach number and flow direction in compressible unsteady flow regimes. In the first section, a brief review is made of the sensor and associated technology which has been developed to permit a flexible design of fast response aerodynamic probe. Following this, an extensive programme of testing large scale aerodynamic models of candidate geometries for suitable semiconductor scale probes is described, and the results of these discussed. The conclusions of these experiments, conducted for turbine representative mean and unsteady flows, yielded new information for optimising the design of the small scale semiconductor probes, in terms of probe geometry, sensor placement, and aerodynamic performance. Details are given of a range of wedge and pyramid semiconductor probes constructed, and the procedures used in calibrating and making measurements with them. Differences in performance are discussed, allowing the experimenter to choose an appropriate probe for the particular measurement required. Finally, the application of prototype semiconductor probes in a transient rotor experiment at HP turbine representative conditions is described, and the data so obtained is compared with (PD solutions of the unsteady viscous flow-field.


2011 ◽  
Vol 17 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Yang Dang‐guo ◽  
Zhang Zheng‐yu ◽  
Sun Yan ◽  
Zhu Wei‐jun

Sign in / Sign up

Export Citation Format

Share Document