Modeling of Shape Memory Alloy Wire Meshes Using Effective Lamina Properties for Improved Analysis Efficiency

Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Dimitris Lagoudas

Shape memory alloy (SMA) wire meshes are being investigated for their potential effectiveness as active layers in self-folding origami laminates. The currently studied meshes consist of two orthogonal sets of equally spaced parallel SMA wires. The modeling of self-folding laminates with SMA wire meshes becomes computationally demanding at full scale due to the expenses of accurately representing the bending segments of the SMA meshes. Modeling the wires as beam, shell, or three-dimensional entities can be used for such purposes; however, those options become difficult to implement due to the small dimensions of the mesh compared to the full scale self-folding system and the algorithmic complexity of considering the application of heating power to discrete wire regions. A solution to this problem is to model the SMA meshes using an equivalent lamina representation. In this work, an effective lamina model for the representation of the SMA wire meshes that accounts for thermoelastic and inelastic phase transformation behavior is developed. A reduced order version of the effective lamina model is implemented and validated against finite element simulations of an SMA wire mesh considering the same underlying 3D constitutive model. The results show that the effective lamina model accurately predicts the behavior of the fully modeled SMA wire mesh. Future work includes the calibration of the full version of the model and its implementation in a finite element framework.

2019 ◽  
Vol 30 (15) ◽  
pp. 2241-2256 ◽  
Author(s):  
Suchao Li ◽  
Chenxi Mao

Two types of novel shape-memory alloy-based devices with three-dimensional isolation potential and deformation recovery abilities were developed. These two types of isolators, which are called shape-memory alloy pseudo-rubber isolators, were both created with martensitic shape-memory alloy wires through weaving, rolling, and punching processes, but they underwent heat treatment at different fabrication stages and for different durations. A series of mechanical tests were performed on these two types of shape-memory alloy pseudo-rubber isolators to investigate their properties under compression, shear, and combined compression–shear loading at room temperature. The restorable shear limit was then investigated, and the corresponding shear failure mechanism was discussed according to a tension test of one thin layer of the shape-memory alloy wire mesh. Subsequently, the deformation recovery ability of the shape-memory alloy pseudo-rubber isolator with residual deformation was tested through heating on a thermo-control stove. Finally, the mechanical-property stabilities, energy-dissipation abilities, and recovery abilities were compared between the two types of shape-memory alloy pseudo-rubber isolator devices. The experimental results indicated that both types of shape-memory alloy pseudo-rubber isolators had excellent residual deformation recovery abilities, and the type-I shape-memory alloy pseudo-rubber isolator device had more stable mechanical properties than the type-II shape-memory alloy pseudo-rubber isolator. The type-I shape-memory alloy pseudo-rubber isolator device is thus an ideal candidate for traditional three-dimensional isolators.


2018 ◽  
Vol 29 (20) ◽  
pp. 3902-3922 ◽  
Author(s):  
Nguyen Van Viet ◽  
Wael Zaki ◽  
Rehan Umer

We propose a new analytical model for a superelastic shape memory alloy prismatic cantilever beam subjected to a concentrated force at the tip. The force is gradually increased and then removed and the corresponding distribution of phase transformation fields in the beam is determined, analytically, in both the transverse and longitudinal directions. Analytical moment–curvature and shear force–shear strain relations are also derived during loading and unloading of the beam. The proposed model is validated against an exact numerical beam model as well as a three-dimensional finite element analysis model for the same beam, with very good agreement in each case. Moreover, an experiment is proposed and carried out to characterize the load–deflection response of a shape memory alloy beam under the same boundary conditions as those considered in deriving the model. The obtained response is in good agreement with the analytical model as well as three-dimensional finite element analysis simulations. The analytical method provides a direct mathematical way for describing the material and structural properties of the beam and the distribution of the different solid phase regions as they change under the influence of an applied load and allows the determination of details such as the boundaries of solid phase regions immediately and accurately using equations. The same would require postprocessing at possibly significant computational cost and personal effort if finite element analysis or similar numerical methods are used.


Author(s):  
Pingping Zhu ◽  
L. Catherine Brinson ◽  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Aaron Stebner

Many three-dimensional constitutive models have been proposed to enhance the analysis and design of shape memory alloy (SMA) structural components. Phenomenological models are desirable for this purpose since they describe macroscopic responses using internal variables to govern the homogenized material response. Because they are computationally efficient on the scale of millimeters to meters, these models are often the only viable option when assessing the response of full-scale SMA components for engineering applications. Thus, many different 3D SMA constitutive models have been developed. However, for their intended user, the application engineer, a clear and straightforward methodology has not been established for selecting a model to use in a design process. A primary goal of the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) modeling working group has been establishment of model selection methodology. One critical step in this process is the development of benchmark problems that clearly illustrate the capabilities and efficiencies of models. In this paper, we propose a set of benchmark problems centered on an SMA tube component. These problems have been selected to demonstrate both uniaxial and multiaxial, actuation and superelastic capabilities of 3D SMA models. We then use finite element simulations of these benchmark problems to compare and contrast both the material modeling and implementation of three unique SMA constitutive models.


2010 ◽  
Vol 452-453 ◽  
pp. 537-540 ◽  
Author(s):  
Xue Feng Zhou ◽  
You Hai Zhi ◽  
Bing Wang Gou

The three-dimensional (3D) finite element model of shape memory alloy (SMA) joint system under a clamped-clamped support was established. Using the coupled thermal-mechanical transient state analysis, stress distributions of models under the different loads (internal pressure, temperature) were investigated. And the temperature field, thermal strain field, stress and creep of the joint system were obtained. The results show, 1) for the non-coat SMA joint system, the interface in middle region of the joint’s internal wall is the dangerous region. In this region, the joint’s adhesion failures easily occur and the crack easily initiate. The joint’s coat can improve the fatigue life of joint system. 2) There are higher levels of radial temperature gradient, temperature strain and temperature stress between the internal and external walls of the joint. The creep strain in the internal-external walls of the joint is the main reason for adhesion failure in middle interfaces between the joint and the pipe.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


Sign in / Sign up

Export Citation Format

Share Document