Comparative study of two types of self-recovery shape-memory alloy pseudo-rubber isolator devices under compression–shear interactions

2019 ◽  
Vol 30 (15) ◽  
pp. 2241-2256 ◽  
Author(s):  
Suchao Li ◽  
Chenxi Mao

Two types of novel shape-memory alloy-based devices with three-dimensional isolation potential and deformation recovery abilities were developed. These two types of isolators, which are called shape-memory alloy pseudo-rubber isolators, were both created with martensitic shape-memory alloy wires through weaving, rolling, and punching processes, but they underwent heat treatment at different fabrication stages and for different durations. A series of mechanical tests were performed on these two types of shape-memory alloy pseudo-rubber isolators to investigate their properties under compression, shear, and combined compression–shear loading at room temperature. The restorable shear limit was then investigated, and the corresponding shear failure mechanism was discussed according to a tension test of one thin layer of the shape-memory alloy wire mesh. Subsequently, the deformation recovery ability of the shape-memory alloy pseudo-rubber isolator with residual deformation was tested through heating on a thermo-control stove. Finally, the mechanical-property stabilities, energy-dissipation abilities, and recovery abilities were compared between the two types of shape-memory alloy pseudo-rubber isolator devices. The experimental results indicated that both types of shape-memory alloy pseudo-rubber isolators had excellent residual deformation recovery abilities, and the type-I shape-memory alloy pseudo-rubber isolator device had more stable mechanical properties than the type-II shape-memory alloy pseudo-rubber isolator. The type-I shape-memory alloy pseudo-rubber isolator device is thus an ideal candidate for traditional three-dimensional isolators.

2019 ◽  
Vol 31 (4) ◽  
pp. 550-569 ◽  
Author(s):  
Nadia M Mirzai ◽  
Reza Attarnejad ◽  
Jong Wan Hu

Shear recentering polyurethane friction damper is a type of passive control device, including the shape memory alloy plates, polyurethane springs, and friction devices. This damper can be employed in the shear link of an inverted Y-shaped braced frame. As the failure mode is a shear failure, in this study, the shear recentering polyurethane friction damper is proposed to remove the residual deformation of the structure that remains after a strong earthquake and causes considerable damage to the structure. The shear recentering polyurethane friction damper can help the structure to return to the initial position. Furthermore, as compared to many other dampers, this new damper is of low cost, and its assembling requires a simple technology. In order to evaluate the performance of the damper, four different cases are considered. Furthermore, the effect of each component is investigated in each case, and a finite element analysis is performed under cyclic loading using the ABAQUS platform. In addition, for the sake of comparison, the shape memory alloy plates are replaced by steel ones, and a comparison for the results demonstrates that the recentering shear dampers can significantly decrease residual deformation, while there is a large amount of residual deformation in the steel damper. Due to using the polyurethane springs, the ultimate capacity of the shear shape memory alloy polyurethane friction damper is 500 kN; however, in the shear steel polyurethane friction damper, it is only about 300 kN. Furthermore, the energy dissipation by the shear shape memory alloy polyurethane friction damper is larger than the shear steel polyurethane friction damper. The results show that the steel plates cannot effectively increase energy dissipation.


Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Dimitris Lagoudas

Shape memory alloy (SMA) wire meshes are being investigated for their potential effectiveness as active layers in self-folding origami laminates. The currently studied meshes consist of two orthogonal sets of equally spaced parallel SMA wires. The modeling of self-folding laminates with SMA wire meshes becomes computationally demanding at full scale due to the expenses of accurately representing the bending segments of the SMA meshes. Modeling the wires as beam, shell, or three-dimensional entities can be used for such purposes; however, those options become difficult to implement due to the small dimensions of the mesh compared to the full scale self-folding system and the algorithmic complexity of considering the application of heating power to discrete wire regions. A solution to this problem is to model the SMA meshes using an equivalent lamina representation. In this work, an effective lamina model for the representation of the SMA wire meshes that accounts for thermoelastic and inelastic phase transformation behavior is developed. A reduced order version of the effective lamina model is implemented and validated against finite element simulations of an SMA wire mesh considering the same underlying 3D constitutive model. The results show that the effective lamina model accurately predicts the behavior of the fully modeled SMA wire mesh. Future work includes the calibration of the full version of the model and its implementation in a finite element framework.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


2019 ◽  
Vol 30 (15) ◽  
pp. 2283-2298
Author(s):  
Zhixiang Rao ◽  
Xiaojun Yan ◽  
Xiaoyong Zhang ◽  
Bin Zhang ◽  
Jun Jiang ◽  
...  

Currently, most wire-woven trusses are fabricated with traditional metals such as steel and aluminum, thus the deformation ability is constrained due to the low yield strain of common metals. Shape-memory alloy is a kind of smart material which can bear large recoverable strain while producing hysteresis. Due to the unique capacity of large deformation and remarkable damping property of the shape-memory alloy, a novel lattice trusses assembled by superelastic shape-memory alloy coil springs was proposed. Furthermore, the treatment processes to prepare the shape-memory alloy coil springs and the assembly method to fabricate the shape-memory alloy wire–woven trusses were also introduced. The quasi-static compression under different maximum deformation and temperatures was performed to investigate the mechanical and thermal responses of the proposed shape-memory alloy wire–woven trusses. Cyclic compression tests were also performed to study the functional fatigue of the shape-memory alloy wire–woven trusses. The proposed wire-woven trusses can undergo up to 80% deformation by compression and recover without evident residual deformation after unloading. Finite element analysis simulation of representative volume element under different deformation was presented. Analytical modeling of the stiffness of shape-memory alloy wire–woven trusses was also carried out. Both the numerical and analytical methods can predict the stiffness within a small deviation.


2019 ◽  
Vol 14 (01) ◽  
pp. 2050001
Author(s):  
Jize Mao ◽  
Daoguang Jia ◽  
Zailin Yang ◽  
Nailiang Xiang

Lack of corrosion resistance and post-earthquake resilience will inevitably result in a considerable loss of function for concrete bridge piers with conventional steel reinforcement. As an alternative to steel reinforcement, shape memory alloy (SMA)-based reinforcing bars are emerging for improving the seismic performance of concrete bridge piers. This paper presents an assessment of concrete bridge piers with different reinforcement alternatives, namely steel reinforcement, steel-SMA hybrid reinforcement and SMA reinforcement. The bridge piers with different reinforcements are designed having a same lateral resistance, or in other words, the flexural capacities of plastic hinges are designed equal. Based on this, numerical studies are conducted to investigate the relative performance of different bridge piers under seismic loadings. Seismic responses in terms of the maximum drift, residual drift as well as dissipated energy are obtained and compared. The results show that all the three cases with different reinforcements exhibit similar maximum drifts for different earthquake magnitudes. The SMA-reinforced bridge pier has the smallest post-earthquake residual displacement and dissipated energy, whereas the steel-reinforced pier shows the opposite responses. The steel-SMA hybrid reinforcement can achieve a reasonable balance between the residual deformation and energy dissipation.


Author(s):  
Jeffery Lo ◽  
Dennis Lau ◽  
S. W. Ricky Lee ◽  
Simon Chan ◽  
Frank Chan ◽  
...  

The solder ball shear test is a commonly used method to evaluate the attachment strength of solder balls. However, some previous studies indicated that the solder ball shear test may not be suitable for showing the effect of intermetallic compound (IMC) growth due to thermal aging. This is because the IMC layer is thin and not susceptible to the shear loading. Since the IMC layer consists of brittle materials, the ball pull test should be a better method to evaluate the solder ball attachment strength. The major challenge of conducting a solder ball pull test is how to grip the solder ball. This paper presents an innovative method for conducting the solder ball pull test. A shape memory alloy (SMA) tube is used to grip the solder ball and pull it off from the substrate. The inner diameter of the SMA tube is originally smaller than the diameter of the solder ball under testing. Once the temperature is raised to higher than the switching temperature of SMA, the SMA tube will expand radially, resulting an inner diameter larger than the solder ball. After the SMA tube cools down, the tube contracts and grips the solder ball firmly. The solder ball can then be pulled off from the attached substrate by frictional force. A prototype of the aforementioned solder ball pull test device has been developed. Some preliminary testing results are presented in this paper.


2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


2019 ◽  
Vol 31 (1) ◽  
pp. 84-99 ◽  
Author(s):  
Nguyen Van Viet ◽  
Wael Zaki ◽  
Rehan Umer ◽  
Quan Wang

A new model is proposed to describe the response of laminated composite beams consisting of one shape memory alloy layer and one functionally graded material layer. The model accounts for asymmetry in tension and compression of the shape memory alloy behavior and successfully describes the dependence of the position of the neutral surface on phase transformation within the shape memory alloy and on the load direction. Moreover, the model is capable of describing the response of the composite beam to both loading and unloading cases. In particular, the derivation of the equations governing the behavior of the beam during unloading is presented for the first time. The effect of the functionally graded material gradient index and of temperature on the neutral axis deviation and on the overall behavior of the beam is also discussed. The results obtained using the model are shown to fit three-dimensional finite element simulations of the same beam.


Sign in / Sign up

Export Citation Format

Share Document