Development of High-Efficiency Piezoelectric-Based Energy-Harvesting Power Sources Using Motion-Doubling Mechanisms

Author(s):  
Jahangir Rastegar ◽  
Richard Murray

Piezoelectric-based energy harvesting power sources that employ spring-mass vibrating systems have been employed with great success to harvest energy from various shock loading and/or vibration and oscillatory motions in numerous systems. In these systems, the external stimuli is used to store mechanical energy in the spring of a mass-spring unit which is attached to a piezoelectric element or a magnet and coil generator, and generate electrical energy as the vibrating mass-spring unit undergoes vibration and applies a cyclic load to the piezoelectric element. In this paper, the implementation of such energy harvesting power sources with a novel motion-doubling mechanism is presented. This novel force transmission method has two key advantages. Firstly, it provides the means to amplify the force applied to the piezoelectric element. Secondly, it provides the means of doubling the number of cycles of compressive forces applied to the piezoelectric elements during each cycle of vibration as compared to the direct mass-spring-piezoelectric generators that have been developed to date. The motion doubling and the resulting halving of the required number of cycles of vibration of the mass-spring unit for generating a certain amount of electrical energy has the effect of significantly increasing the mechanical to electrical energy conversion efficiency of the power source by significantly reducing structural damping losses in the spring element and by the increase in the level of force that is applied to the energy harvesting piezoelectric elements. The design and prototype fabrication of such an energy harvesting power sources is discussed.

Author(s):  
Jahangir Rastegar ◽  
Richard Murray

This is a review of two patents relating to electrical power generation on-board gun-fired munitions. The devices harvest mechanical energy from the motion of the projectile (e.g. the axial firing acceleration), and then convert the energy from mechanical to electrical using novel mechanisms and materials such as piezoelectric elements. The devices are particularly important for several reasons. Firstly, the devices are inherently safe because the root source of the electrical energy is the motion of the projectile; therefore no electrical energy can be produced until after the projectile is fired. Second, the devices have a much longer shelf-life than competing electrical power sources such as batteries. Finally, the devices are simple, rugged, and reliable making them ideal for the harsh environment on-board gun-fired projectiles. In addition to presenting the general approach, the logical framework of the patented embodiments is presented, especially with respect to the types of motion used for harvesting and the challenges presented by the varied magnitudes of those motions in different weapon platforms.


Piezoelectric elements are commonly installed in shoe sole to make use of the piezoelectric effect due to the vibration generated by the human motion. Piezoelectric shoe is a great device that can be used to harvest energy and can be improved by adding more piezoelectric elements and providing storage to store the harvested energy. However, not many researchers focus on the analyzation of piezoelectric elements’ shape that may affect the efficiency of energy harvesting. In this paper, piezoelectric energy harvesting shoes are designed with piezoelectric elements installed inside the soles of the shoes, thereby gaining mechanical energy from user while walking and running. The mechanical energy was applied to the piezoelectric elements and converted into electrical energy. Bridge rectifier was used to convert the AC voltage output into DC voltage. The project focused on analyzation of the efficiency between round and square shaped piezoelectric elements. Different shape of the piezoelectric element produced different amount of output voltage. Square shaped piezoelectric tended to produce lesser output voltage than the round piezoelectric element. A round piezoelectric with diameter of 4.5cm produced mean output voltage up to 11.56V and square piezoelectric with size of 4.5cm x 4.5cm produced 6.12V. However, this all depended on how much pressure that was applied onto the piezoelectric elements.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Author(s):  
Sunija Sukumaran ◽  
Samir Chatbouri ◽  
Didier Rouxel ◽  
Etienne Tisserand ◽  
Frédéric Thiebaud ◽  
...  

Energy harvesting is one of the most promising research areas to produce sustainable power sources from the ambient environment. Which found applications to attain the extensive lifetime self-powered operations of various devices such as MEMS wireless sensors, medical implants and wearable electronic devices. Piezoelectric nanogenerators can efficiently convert the vastly available mechanical energy into electrical energy to meet the requirements of low-powered electronic devices. Among the piezoelectric materials, poly (vinylidene fluoride) (PVDF) and its copolymers are extensively studied for the development of energy harvesting devices. Due to the outstanding properties such as high flexibility, ease of processing, long-term stability, biocompatibility makes them a promising candidate for piezoelectric generators. Nevertheless, compared to piezoceramic materials, PVDF based generators produce lower piezoresponse. Over the last decades, tremendous research activities have been reported to endorse the performance of PVDF based energy harvesters. This review article mainly focused on the recent progress in the performance improvement with processing methods, piezoelectric materials, different filler loading. The new developments and design structures will lead to an increase in piezoelectricity, alignment of dipoles, dielectric properties and subsequently enhance the output performance of the device. Electronic circuits play a vital role in energy harvesting to efficiently collect the developed charge from the device. Here, we have proposed a detailed description of the electronic circuits. Also, in the application part deals with the recent progress in flexible, biomedical and hybrid generators based on PVDF polymers.


Author(s):  
Yuejuan Li ◽  
Marvin H. Cheng ◽  
Ezzat G. Bakhoum

Piezoelectric devices have been widely used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. This type of power generation devices can provide a convenient alternative to traditional power sources used to operate certain types of sensors/actuators, MEMS devices, and microprocessor units. However, the amount of energy produced by these devices is in many cases far too small to directly power an electrical device. Therefore, much of the research into power harvesting has focused on methods of accumulating the energy until a sufficient amount is present, allowing the intended electronics to be powered. Due to the tiny amount of harvestable power from a single device, it is critical to collect vibration energy efficiently. Many research groups have developed various methods to operate the harvesting devices at their resonant frequencies for maximal amount of energy. Different techniques of conversion circuits are also investigated for efficient transformation from mechanical vibration to electrical energy. However, efforts have not been made to the analysis of array configuration of energy harvesting elements. Poor combination of piezoelectric elements, such as phase difference, cannot guarantee the increasing amount of harvested energy. To realize a piezoelectric energy-harvesting device with higher volume energy density, the energy conversion efficiencies of different array configurations were investigated. In the present study, various combinations of piezoelectric elements were analyzed to achieve higher volume energy density. A charging circuit for solid-state batteries with planned energy harvesting strategy was also proposed. With the planned harvesting strategy, the required charging time can be estimated. Thus, the applicable applications can be clearly identified. In this paper, optimal combination of piezoelectric cantilevers and different modes of charging methods were investigated. The results provide a means of choosing the piezoelectric device to be used and estimate the amount of time required to recharge a specific capacity solid-state battery.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


2018 ◽  
Vol 17 (2) ◽  
pp. 117
Author(s):  
Tatjana Nikolić ◽  
Mile Stojčev ◽  
Goran Nikolić ◽  
Goran Jovanović

Batteries are the main source of energy for low-power electronics such as micro-electro mechanical systems (MEMS), wireless sensor networks, embedded devices for remote sensing and control, etc. With the limited capacity of finite power sources and the need for supplying energy for the lifetime of a system/device there is a requirement for self-powered devices. Using conventional batteries is not always good design solution because batteries require human intervention to replace them (very often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the electrical power, by using an alternative source of energy that is needed to operate these devices is a major concern. The process of extracting energy from the surrounding environment and converting it into consumable electrical energy is known as energy harvesting or power scavenging. The energy harvesting sources can be used to increase the lifetime and capability of the devices by either replacing or augmenting the battery usage. There are various forms of energy that can be scavenged, like solar, mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field of research related to energy harvesting. This paper represents a survey for identifying the sources of energy harvesting and describes the basic operation of principles of the most common energy harvester. As first, we present, in short, the conversion principles of single energy source harvesting systems and point to their benefits and limitations in their usage. After that, hybrid structures of energy harvesters which simultaneously combine scavenged power from different ambient sources (solar, thermoelectric, electromagnetic), with aim to support higher load at the output, are considered.


Sign in / Sign up

Export Citation Format

Share Document