Study of Guided Wave Propagation in Honeycomb Sandwich Structures

Author(s):  
Zhenhua Tian ◽  
Guoliang Huang ◽  
Lingyu Yu

This paper studies the guided waves in honeycomb sandwich structures and explores the ability of guided waves for the debonding damage detection. Both the finite element (FE) simulations and laser vibrometry experiments are used. A three-dimensional (3D) FE model is built to simulate the guided waves in a honeycomb sandwich plate. The simulation results show the guided waves in the structure depend on the wave frequency. At low frequencies, the global guided waves propagate in the entire sandwich, while leaky guided waves dominate in the skin panel at high frequencies. To further understand the guided wave propagation fundamentals, laser vibrometry experiments are performed. The waveforms, time-space wavefields, and frequency-wavenumber spectra obtained from the experiments are used to unveil the wave propagation features. The experimental results confirm the leaky guided waves. Moreover, the experimental results show the complex wave interactions induced by the honeycomb core. When the debonding between the skin and honeycomb core presents, the guided wave amplitude increases, and the wave interaction with the honeycomb core reduces.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jochen Moll ◽  
Christian Kexel ◽  
Serena Pötzsch ◽  
Marcel Rennoch ◽  
Axel S. Herrmann

Abstract The influence of temperature is regarded as particularly important for a structural health monitoring system based on ultrasonic guided waves. Since the temperature effect causes stronger signal changes than a typical defect, the former must be addressed and compensated for reliable damage assessment. Development of new temperature compensation techniques as well as the comparison of existing algorithms require high-quality benchmark measurements. This paper investigates a carbon fiber reinforced plastic (CFRP) plate that was fully characterized in previous research in terms of stiffness tensor and guided wave propagation. The same CFRP plate is used here for the analysis of the temperature effect for a wide range of ultrasound frequencies and temperatures. The measurement data are a contribution to the Open Guided Waves (OGW) platform: http://www.open-guided-waves.de. The technical validation includes initial results on the analysis of phase velocity variations with temperature and exemplary damage detection results using state-of-the-art signal processing methods that aim to suppress the temperature effect.


Author(s):  
Owen M. Malinowski ◽  
Matthew S. Lindsey ◽  
Jason K. Van Velsor

In the past few decades, ultrasonic guided waves have been utilized more frequently Non-Destructive Testing (NDT); most notably, in the qualitative screening of buried piping. However, only a fraction of their potential applications in NDT have been fully realized. This is due, in part, to their complex nature, as well as the high level of expertise required to understand and utilize their propagation characteristics. The mode/frequency combinations that can be generated in a particular structure depend on geometry and material properties and are represented by the so-called dispersion curves. Although extensive research has been done in ultrasonic guided wave propagation in various geometries and materials, the treatment of ultrasonic guided wave propagation in periodic structures has received little attention. In this paper, academic aspects of ultrasonic guided wave propagation in structures with periodicity in the wave vector direction are investigated, with the practical purpose of developing an ultrasonic guided wave based inspection technique for finned tubing. Theoretical, numerical, and experimental methods are employed. The results of this investigation show excellent agreement between theory, numerical modeling, and experimentation; all of which indicate that ultrasonic guided waves will propagate coherently in finned tube only if the proper wave modes and frequencies are selected. It is shown that the frequencies at which propagating wave modes exist can be predicted theoretically and numerically, and depend strongly on the fin geometry. Furthermore, the results show that these propagating wave modes are capable of screening for and identifying the axial location of damage in the tube wall, as well as separation of the fins from the tube wall. The conclusion drawn from these results is that Guided Wave Testing (GWT) is a viable inspection method for screening finned tubing.


2010 ◽  
Author(s):  
Pawel Malinowski ◽  
Tomasz Wandowski ◽  
Pawel Kudela ◽  
Wieslaw Ostachowicz ◽  
E. P. Tomasini

2018 ◽  
Vol 30 (9) ◽  
pp. 1306-1317 ◽  
Author(s):  
Lingyu Yu ◽  
Zhenhua Tian ◽  
Xiaopeng Li ◽  
Rui Zhu ◽  
Guoliang Huang

Ultrasonic guided waves have proven to be an effective and efficient method for damage detection and quantification in various plate-like structures. In honeycomb sandwich structures, wave propagation and interaction with typical defects such as hidden debonding damage are complicated; hence, the detection of defects using guided waves remains a challenging problem. The work presented in this article investigates the interaction of low-frequency guided waves with core–skin debonding damage in aluminum core honeycomb sandwich structures using finite element simulations. Due to debonding damage, the waves propagating in the debonded skin panel change to fundamental antisymmetric Lamb waves with different wavenumber values. Exploiting this mechanism, experimental inspection using a non-contact laser Doppler vibrometer was performed to acquire wavefield data from pristine and debonded structures. The data were then processed and analyzed with two wavefield data–based imaging approaches, the filter reconstruction imaging and the spatial wavenumber imaging. Both approaches can clearly indicate the presence, location, and size of the debonding in the structures, thus proving to be effective methods for debonding detection and quantification for honeycomb sandwich structures.


Author(s):  
Florin Turcu ◽  
Francesco Bertoncini ◽  
Giuseppe Giunta ◽  
Marco Raugi

Guided Waves (GW) have become widely used for the inspection of unpiggable and inaccessible pipelines because of the presence of coating, because of their position or because they are buried. Among the possible anomalies, corrosion is the main integrity issue affecting pipelines. The effect that corrosion has on guided wave propagation is attenuation and increased coherent noise when it is generalized or reflection when corrosion is localized. In this paper, the possibility to characterize corrosion areas affecting pipelines through long range guided wave inspection or monitoring is investigated. With this purpose field testing was performed and the results were used for the validation of numerical methods able to simulate the phenomenon.


2008 ◽  
Vol 32 ◽  
pp. 289-292
Author(s):  
Ye Lu ◽  
Lin Ye ◽  
Dong Wang ◽  
Guang Meng

A piezoelectric active sensor network is configured to collect the wave scattering from a throughthickness hole on an aluminium rectangular tube. It is found that guided waves are capable of propagating across the tube edges, while keeping the sensitivity to the damage even not on surfaces where the actuator and sensor are located. Signal correlation between the intact and damaged structure is evaluated and the probability distribution of damage is thus achieved on the unfolded tube surface.


2021 ◽  
Author(s):  
Parambeer Singh Negi ◽  
Dileep Koodalil ◽  
Krishnan Balasubramaniam

Abstract A method is presented to evaluate the interfacial weakness of aluminium-based honeycomb sandwich structure (HSS) using Shear Horizontal (SH) guided wave. SH guided waves are sensitive to the interfacial properties since the wave particles vibration is oriented parallel to the adhesive-adherent joints. Periodic permanent magnet (PPM) electromagnetic acoustic transducers (EMATs) are used to excite and detect SH-guided waves. A semi-analytical finite element method is developed to simulate the SH wave propagation in HSS. The boundary stiffness approach is used to model the adhesive-adherent interface. The excitation parameters are chosen such that only SH0 mode is generated in the structure. The interaction of the fundamental SH0 wave mode with various defects and the different interface stiffness is analyzed. The frequency-wavenumber analysis is used to study the effect of interface stiffness on SH wave propagation. The analysis reveals that in a perfect bond, SH0 and S0 guided modes are present. The interaction of SH0 mode with the honeycomb core results in the genesis of S0 mode. Thus, the presence or absence of the S0 mode can be used as an indicator of bond quality. The findings from the FE simulation are validated against the experiment. The analysis shows a reliable non-destructive evaluation of the interface joint and classifying them as good or bad bonds.


Author(s):  
Jikai Du

Ultrasound guided waves have been recognized as an effective tool for the rapid and long-range inspection of composite cylindrical structures, but its application is still limited due to the complex nature of guided waves and their interactions with material geometry and material properties. This paper uses finite element technique to simulate the ultrasound guided wave propagation in layered composite cylinders. Ultrasound guided wave propagation was analyzed in a double-layered cylinder composed of an anisotropic unidirectional carbon fiber/epoxy resin composite layer wrapped on an isotropic aluminum cylinder. The carbon fiber orientation is either along the cylinder circumferential direction or axial direction. Ultrasound wave is excited from a PZT-4 transducer which is placed on the top of a Plexiglas wedge to adjust the ultrasound incident angle into the cylinder. Low ultrasound frequencies at 0.5 and 1.0 MHz were selected to improve the effect of attenuation and simulation efficiency. Wave propagation velocities and wave structures were analyzed at various positions of the cylinder. This study helped to examine the effect of fiber orientation on wave dispersion characteristics and to assess the feasibility of applying ultrasound guided wave technique for the evaluation of composite cylindrical structures.


Author(s):  
Takahiro Hayashi ◽  
Koichiro Kawashima ◽  
Zongqi Sun ◽  
Joseph L. Rose

Wave propagation across a pipe elbow region is complex. Subsequent reflected and transmitted waves are largely deformed due to mode conversions at the elbow. This prevents us to date from applying guided waves to the nondestructive evaluation of meandering pipeworks. Since theoretical development of guided wave propagation in a pipe is difficult, numerical modeling techniques are used. We have introduced a semi-analytical finite element method, a special modeling technique for guided wave propagation, because ordinary finite element methods require extremely long computational times and memory for such a long-range guided wave calculation. In this study, the semi-analytical finite element method for curved pipes is developed. A curved cylindrical coordinate system is used for the curved pipe region, where a curved center axis of the pipe elbow region is an axis (z′ axis) of the coordinate system, instead of the straight axis (z axis) of the cylindrical coordinate system. Guided waves in the z′ direction are described as a superposition of orthogonal functions. The calculation region is divided only in the thickness and circumferential directions. Using this calculation technique, echoes from the back wall beyond up to four elbows are discussed.


Sign in / Sign up

Export Citation Format

Share Document