Ultrasonic Guided Wave Testing of Finned Tubing

Author(s):  
Owen M. Malinowski ◽  
Matthew S. Lindsey ◽  
Jason K. Van Velsor

In the past few decades, ultrasonic guided waves have been utilized more frequently Non-Destructive Testing (NDT); most notably, in the qualitative screening of buried piping. However, only a fraction of their potential applications in NDT have been fully realized. This is due, in part, to their complex nature, as well as the high level of expertise required to understand and utilize their propagation characteristics. The mode/frequency combinations that can be generated in a particular structure depend on geometry and material properties and are represented by the so-called dispersion curves. Although extensive research has been done in ultrasonic guided wave propagation in various geometries and materials, the treatment of ultrasonic guided wave propagation in periodic structures has received little attention. In this paper, academic aspects of ultrasonic guided wave propagation in structures with periodicity in the wave vector direction are investigated, with the practical purpose of developing an ultrasonic guided wave based inspection technique for finned tubing. Theoretical, numerical, and experimental methods are employed. The results of this investigation show excellent agreement between theory, numerical modeling, and experimentation; all of which indicate that ultrasonic guided waves will propagate coherently in finned tube only if the proper wave modes and frequencies are selected. It is shown that the frequencies at which propagating wave modes exist can be predicted theoretically and numerically, and depend strongly on the fin geometry. Furthermore, the results show that these propagating wave modes are capable of screening for and identifying the axial location of damage in the tube wall, as well as separation of the fins from the tube wall. The conclusion drawn from these results is that Guided Wave Testing (GWT) is a viable inspection method for screening finned tubing.

Author(s):  
Shijiu Jin ◽  
Liying Sun ◽  
Guichun Liu ◽  
Yibo Li ◽  
Hong Zhang

A new non-destructive pipe inspection method, ultrasonic guided wave method as well as the comparison between ultrasonics and guided waves is introduced. An investigation of the guided ultrasonic waves traveling along pipes with fluid loading on the inside and outside of the pipe is described. The effect of inner and outer media has been researched by considering a steel pipe with air and water inside and outside the experimental pipe. Site experiment was carried out on a heating pipe in the resident area of Bohai Oil Company, China. A typical cylindrical guided wave, longitudinal guided wave was used to examine pipes with artificial defects and its propagation characteristics along the pipe were studied. Good agreement has been obtained between the experiments and predictions for pipes with different loading on the pipe.


Author(s):  
Yanfeng Shen ◽  
Carlos E. S. Cesnik

This paper presents the local interaction simulation approach (LISA) for efficient modeling of linear and nonlinear ultrasonic guided wave active sensing of complex structures. Three major modeling challenges are considered: material anisotropy with damping effects, nonlinear interactions between guided waves and structural damage, as well as geometric complexity of waveguides. To demonstrate LISA's prowess in addressing such challenges, carefully designed numerical case studies are presented. First, guided wave propagation and attenuation in carbon fiber composite panels are simulated. The numerical results are compared with experimental measurements obtained from scanning laser Doppler vibrometry (SLDV) to illustrate LISA's capability in modeling damped wave propagation in anisotropic medium. Second, nonlinear interactions between guided waves and structural damage are modeled by integrating contact dynamics into the LISA formulations. Comparison with commercial finite element software reveals that LISA can accurately simulate nonlinear ultrasonics but with much higher efficiency. Finally, guided wave propagation in geometrically complex waveguides is studied. The numerical example of multimodal guided wave propagation in a rail track structure with a fatigue crack is presented, demonstrating LISA's versatility to model complex waveguides and arbitrary damage profiles. This article serves as a comprehensive, systematic showcase of LISA's superb capability for efficient modeling of transient dynamic guided wave phenomena in structural health monitoring (SHM).


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2128 ◽  
Author(s):  
Xiang Wan ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Peter W. Tse ◽  
Ming Dong ◽  
...  

The polygonal drill pipe is one of the most critical yet weakest part in a high-torque drill machine. The inspection of a polygonal drill pipe to avoid its failure and thus to ensure safe operation of the drilling machine is of great importance. However, the current most frequently used ultrasonic inspection method is time-consuming and inefficient when dealing with a polygonal drill pipe, which is normally up to several meters. There is an urgent need to develop an efficient method to inspect polygonal drill pipes. In this paper, an ultrasonic guided wave technique is proposed to inspect polygonal drill pipes. Dispersion curves of polygonal drill pipes are firstly derived by using the semi-analytical finite element method. The ALID (absorbing layer using increasing damping) technique is applied to eliminate unwanted boundary reflections. The propagation characteristics of ultrasonic guided waves in normal, symmetrically damaged, and asymmetrically damaged polygonal drill pipes are studied. The results have shown that the ultrasonic guided wave technique is a promising and effective method for the inspection of polygonal drill pipes.


2000 ◽  
Author(s):  
Subhendu K. Datta ◽  
Osama Mukdadi

Abstract Exact and approximate analyses of ultrasonic guided wave propagation in thin orthotropic layers are presented in this work. Exact solutions to the equations governing the dependence of guided wave propagation speeds on the elastic constants characterizing the anisotropic properties of the layers are presented and compared with the predictions of first order approximate theories for extensional and flexural waves in thin plates. Comparison with available experimental results for dispersion of these waves in thin sheets of different types of papers leads to the confirmation or modification of the elastic constants and density reported for these papers. A particular focus of this study is the coupling of three types of guided waves (extensional (S), flexural (A), and shear-horizontal (SH)) due to anisotropy of the material. It is shown that there are significant changes in the dispersion characteristics of these modes at certain frequencies, which can be exploited to measure the in-plane elastic properties of thin layers. Another focus is to study the limitations of approximate results when compared with exact solutions for wave propagation in different directions. In general good agreements are found at low frequencies.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jochen Moll ◽  
Christian Kexel ◽  
Serena Pötzsch ◽  
Marcel Rennoch ◽  
Axel S. Herrmann

Abstract The influence of temperature is regarded as particularly important for a structural health monitoring system based on ultrasonic guided waves. Since the temperature effect causes stronger signal changes than a typical defect, the former must be addressed and compensated for reliable damage assessment. Development of new temperature compensation techniques as well as the comparison of existing algorithms require high-quality benchmark measurements. This paper investigates a carbon fiber reinforced plastic (CFRP) plate that was fully characterized in previous research in terms of stiffness tensor and guided wave propagation. The same CFRP plate is used here for the analysis of the temperature effect for a wide range of ultrasound frequencies and temperatures. The measurement data are a contribution to the Open Guided Waves (OGW) platform: http://www.open-guided-waves.de. The technical validation includes initial results on the analysis of phase velocity variations with temperature and exemplary damage detection results using state-of-the-art signal processing methods that aim to suppress the temperature effect.


2019 ◽  
Vol 9 (5) ◽  
pp. 1028 ◽  
Author(s):  
Pengfei Zhang ◽  
Zhifeng Tang ◽  
Fuzai Lv ◽  
Keji Yang

Ultrasonic guided waves (UGWs) have attracted attention in the nondestructive testing and structural health monitoring (SHM) of multi-wire cables. They offer such advantages as a single measurement, wide coverage of the acoustic field, and long-range propagation ability. However, the mechanical coupling of multi-wire structures complicates the propagation behaviors of guided waves and signal interpretation. In this paper, UGW propagation in these waveguides is investigated theoretically, numerically, and experimentally from the perspective of dispersion and wave structure, contact acoustic nonlinearity (CAN), and wave energy transfer. Although the performance of all possible propagating wave modes in a multi-wire cable at different frequencies could be obtained by dispersion analysis, it is ineffective to analyze the frequency behaviors of the wave signals of a certain mode, which could be analyzed using the CAN effect. The CAN phenomenon of two mechanically coupled wires in contact was observed, which was demonstrated by numerical guided wave simulation and experiments. Additionally, the measured guided wave energy of wires located in different layers of an aluminum conductor steel-reinforced cable accords with the theoretical prediction. The model of wave energy distribution in different layers of a cable also could be used to optimize the excitation power of transducers and determine the effective monitoring range of SHM.


2022 ◽  
Vol 12 (2) ◽  
pp. 849
Author(s):  
Rymantas Jonas Kazys ◽  
Justina Sestoke ◽  
Egidijus Zukauskas

Ultrasonic-guided waves are widely used for the non-destructive testing and material characterization of plates and thin films. In the case of thin plastic polyvinyl chloride (PVC), films up to 3.2 MHz with only two Lamb wave modes, antisymmetrical A0 and symmetrical S0, may propagate. At frequencies lower that 240 kHz, the velocity of the A0 mode becomes slower than the ultrasonic velocity in air which makes excitation and reception of such mode complicated. For excitation of both modes, we propose instead a single air-coupled ultrasonic transducer to use linear air-coupled arrays, which can be electronically readjusted to optimally excite and receive the A0 and S0 guided wave modes. The objective of this article was the numerical investigation of feasibility to excite different types of ultrasonic-guided waves, such as S0 and A0 modes in thin plastic films with the same electronically readjusted linear phased array. Three-dimensional and two-dimensional simulations of A0 and S0 Lamb wave modes using a single ultrasonic transducer and a linear phased array were performed. The obtained results clearly demonstrate feasibility to excite efficiently different guided wave modes in thin plastic films with readjusted phased array.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiang Wan ◽  
Meiru Liu ◽  
Xuhui Zhang ◽  
Hongwei Fan ◽  
Qinghua Mao ◽  
...  

The hexagonal pipe is a special kind of tube structure. Its inner surface of the cross section is in the shape of circle, while the outer surface is hexagonal. It has functioned as an essential and critical part of a drill stem in a high-torque drill machine used in various resource exploitation fields. The inspection of a hexagonal pipe to avoid its failure and thus to ensure safe operation of a drilling machine is becoming increasingly urgent and important. In this study, the excitation and propagation of ultrasonic guided waves for the purpose of detecting defects in hexagonal pipes are proposed. Dispersion curves of hexagonal pipes are firstly derived by using semianalytical finite element method. Based on these dispersion curves, longitudinal L (0, 2) mode at 100 kHz is selected to inspect hexagonal pipes. A ring of piezoelectric transducers (PZTs) with the size of 25 mm × 5 mm ×0.5 mm is able to maximize the amplitude of L (0, 2) mode and successfully suppress the undesired L (0, 1) mode in the experiments. Numerical and experimental studies have shown that the displacement field of L (0, 2) mode at 100 kHz is almost uniformly distributed along the circumferential direction. Furthermore, L (0, 2) mode ultrasonic guided waves at 100 kHz are capable of detecting circular through-hole damages located in the plane and near the edge in a hexagonal pipe. Our study results have demonstrated that the use of longitudinal L (0, 2) mode ultrasonic guided wave provides a promising and effective alternative for the detection of defects in hexagonal pipe structures.


Sign in / Sign up

Export Citation Format

Share Document