Measurement of Flapping Wing Deformation Using Piezoelectric Modal Sensors

Author(s):  
Jason Tran ◽  
Christopher G. Cameron ◽  
Jayant Sirohi

An experimental investigation was conducted to measure the deformation of flapping wings with distributed piezoelectric modal sensors. The sensors are bonded to the surface of a wing and shaped to extract a specific modal co-ordinate. The experimental setup consisted of a carbon fiber beam with shaped sensors designed to extract the 1st and 2nd modal co-ordinates. The beam was mounted to two different excitation devices (shaker or servomotor) that allowed the beam to be excited at a desired frequency and motion. The resulting electrical signals from the strained modal sensors are calibrated to modal co-ordinate measurements. In order to validate modal sensor measurements, the Digital Image Correlation (DIC) technique is used to obtain full field deformation measurements of the beam. The measured deformation from DIC is then used in conjunction with operational modal analysis to extract modal co-ordinates. Comparison of the modal co-ordinates obtained via modal sensors against DIC measurements show good agreement. Furthermore, a sensitivity analysis was performed to gauge the robustness of modal sensors against construction errors. The results obtained show that modal sensors are a simple and accurate method of obtaining the deformation of a flapping wing.

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4726 ◽  
Author(s):  
Bo Dong ◽  
Fancang Zeng ◽  
Bing Pan

A simple and practical full-frame single-camera stereo-digital image correlation (stereo-DIC) technique for three-dimensional (3D) shape, displacement, and deformation measurements is proposed. The technique uses a compact X-cube prism-based color separation device and a color camera to capture images of blue and red colors from different optical paths, and then extracts the surface 3D shape and deformation information of a test sample by processing the captured two sub-channel color images using regular stereo-DIC algorithm. Compared with the existing full-frame single-camera stereo-DICs, the proposed one eliminates the need for a beam splitter and two bandpass filters to capture images, and offers more simple, compact, and easy-to-use optical arrangement. This novel single-camera stereo-DIC technique was validated by a series of baseline experiments involving 3D surface reconstructions, translation tests, and full-field deformation measurements, which provide a new flexible and practical avenue for measuring surface 3D shape and deformation, particularly in microscopic and high-speed applications.


2008 ◽  
Vol 13-14 ◽  
pp. 105-114
Author(s):  
Amit Puri ◽  
Alexander D. Fergusson ◽  
I. Palmer ◽  
Andrew Morris ◽  
F. Jensen ◽  
...  

This paper presents the experimental results obtained of flexurally loaded wind turbine blade cross section material. All material was extracted from a wind turbine blade box girder and testing was conducted in four point configuration. The aim was to gain an understanding of the structural integrity of this lightweight material as it deforms in flexure. To allow for thorough analysis, digital image correlation (DIC) was used to produce full field strain maps of the deforming specimens. Results highlight the capability of the DIC technique to identify regions of failure, as well as the aspects responsible for them. Overall, the results present a foundation for tests on larger substructure, and eventually integration into manufacturing and maintenance aspects of the industry.


2014 ◽  
Vol 548-549 ◽  
pp. 683-687 ◽  
Author(s):  
Lenny Iryani ◽  
Hery Setiawan ◽  
Tatacipta Dirgantara ◽  
Ichsan Setya Putra

To avoid an unnecessary catastrophic accident due to a failure of a railway track, it is important to have a reliable condition monitoring system for the railway track. The integrity of the railway track can be assessed by monitoring the displacement field of the track, which can then be used to determine the strain and stress field. By knowing the stress history of the track and the S–N curves of the track material, the remaining life of the railway track can be predicted. In the present work, a simple system to monitor and record the displacement field of the railway track has been developed by using Digital Image Correlation (DIC) technique. The set–up to monitor the displacement field of the railway track was developed using a high speed video camera of Nikon J1 to capture the image of the railway track when the train passing through. The DIC technique was then employed off line to measure the displacement field of the 2D image captured. The results showed that the full field displacement measured by using DIC technique gives a good agreement compared to the finite element results. The full field displacement can be used to calculate the strain-stress field, and later on the remaining life assessment can be conducted based on the results.


2015 ◽  
Vol 782 ◽  
pp. 49-58
Author(s):  
Han Liu ◽  
Peng Wan Chen ◽  
Bao Qiao Guo ◽  
Shao Long Zhang ◽  
Hai Bo Liu ◽  
...  

In this paper, the dynamic deformation and rupture of pre-notched thin metal plates subjected to confined blast loading were investigated. The thin copper plates with cross-shape pre-notch were clamped on the end of a confined cylinder vessel by a cover flange. An explosive charge with a mass of 4g was detonated in the vessel center to generate blast load acting on the metal plates. The images of metal plates were recorded by two high-speed cameras. The displacement and strain fields during the deformation and rupture process were measured by using 3D digital image correlation (3D DIC). The effects of pre-notches on the dynamic deformation and rupture of thin metal plates were analyzed. The microstructure of fracture surface was examined The 3D DIC technique is proven to be an effective method to conduct dynamic full-field deformation measurement.


2009 ◽  
Vol 36 (6) ◽  
pp. 862-874 ◽  
Author(s):  
Vikrant Tiwari ◽  
Michael A. Sutton ◽  
S.R. McNeill ◽  
Shaowen Xu ◽  
Xiaomin Deng ◽  
...  

Aerospace ◽  
2005 ◽  
Author(s):  
Helena (Huiqing) Jin ◽  
Wei-Yang Lu ◽  
Jeff Chames ◽  
Nancy Yang

A new experimental technique was developed to characterize the mechanical properties of LIGA (an acronym from German words for lithography, electroplating, and molding) materials. An advanced imaging capability, scanning electron microscopy (SEM), with an integrated loading stage allows the acquisition of in situ microstructural images at the micro scale during loading. The load is measured directly from a load cell, and the displacement field is calculated from the SEM images based on the digital image correlation (DIC) technique. The DIC technique is a full-field deformation measurement technique which obtains displacement fields by comparing random speckle patterns on the specimen surface before and after deformation. The random speckle patterns are typically generated by applying a thin layer of material with high contrast to a specimen surface. Alternatively, DIC can also be applied using the microstructural features of a surface as texture patterns for correlation. DIC technique is ideally suited to characterize the deformation field of MEMS structures without the need to generate a random speckle pattern, which can be very challenging on the micro and nanoscale. In this paper, the technique is experimentally demonstrated on a LIGA specimen. The digital images showing LIGA surface features acquired during the loading can serve as random patterns for the DIC method. Therefore, full-field displacement and strain can be obtained directly on the specimen and the errors incurred by the testing system can be eliminated.


2005 ◽  
Author(s):  
Helena (Huiqing) Jin ◽  
Wei-Yang Lu ◽  
Simon Scheffel ◽  
Michael K. Neilsen ◽  
Terry D. Hinnerichs

Polyurethane foams have good energy absorption properties and are effective in protecting sensitive components from damages due to impact. The foam absorbs impact energy by crushing cells and undergoing large deformation. The complex deformation of the foam needs to be modeled accurately to simulate the impact events. In this paper, the Digital Image Correlation (DIC) technique was implemented to obtain the deformation field of foam specimens under compression tests. Images of foam specimen were continuously acquired using high-speed cameras. The full field displacement and strain at each incremental step of loading were calculated from these images. The closed-cell polyurethane foam used in this investigation was nominal 0.32 kg/m^3 (20 pcf). In the first experiment, cubic specimens were compressed uniaxially up to 60%. The full-field displacements and strains obtained using the DIC technique provide detailed information about the inhomogeneous deformation over the area of interest during loading. In the second experiment, compression tests were conducted for a simple foam structure - cubic foam specimens with a steel cylinder inclusion. The strain concentration at the interface between steel cylinder and foam was studied to simulate the deformation of foam in a typical application. In the third experiment, the foam was loaded from the steel cylinder during the compression. The strain concentration at the interface and the displacement distribution over the surface were compared for cases with and without a confinement fixture to study the effects of confinement. These experimental results demonstrate that the DIC technique can be applied to polyurethane foams to study the heterogeneous deformation. The experimental data is briefly compared with the results from modeling and simulation using a viscoplastic model for the foam.


Sign in / Sign up

Export Citation Format

Share Document