Optimization of Vibration Reduction in a Helicopter Blade With 2 Way Fluid-Structure Interaction

Author(s):  
Mürüvvet Sinem Sicim ◽  
Metin Orhan Kaya

The main goal of this study is the optimization of vibration reduction on helicopter blade by using macro fiber composite (MFC) actuator under pressure loading. Due to unsteady aerodynamic conditions, vibration occurs mainly on the rotor blade during forward flight and hover. High level of vibration effects fatigue life of components, flight envelope, pleasant for passengers and crew. In this study, the vibration reduction phenomenon on helicopter blade is investigated. 3D helicopter blade model is used to perform the aeroelastic behavior of a helicopter blade. Blade design is created by Spaceclaim and finite element analysis is conducted by ANSYS 19.0. Generated model are solved via Fluent by using two-way fluid-solid coupling analysis, then the analyzed results (all aerodynamic loads) are directly transferred to the structural model. Mechanical results (displacement etc.) are also handed over to the Fluent analysis by helping fluid-structure interaction interface. Modal and harmonic analysis are performed after FSI analysis. Shark 120 unmanned helicopter blade model is used with NACA 23012 airfoil. The baseline of the blade structure consists of D spar made of unidirectional Glass Fiber Reinforced Polymer +45°/−45° GFRP skin. MFC, which was developed by NASA’s Langley Research Center for the shaping of aerospace structures, is applied on both upper and lower surfaces of the blade to reduce the amplitude in the twist mode resonant frequency. D33 effect is important for elongation and to observe twist motion. To foresee the behavior of the MFC, thermo-elasticity analogy approach is applied to the model. Therefore, piezoelectric voltage actuation is applied as a temperature change on ANSYS. The thermal analogy is validated by using static behavior of cantilever beam with distributed induced strain actuators. Results for cantilever beam are compared to experimental results and ADINA code results existing in the literature. The effects of fiber orientation of MFC actuator and applied voltage on vibration reduction on helicopter blade are represented. The study shows that torsion mode determines the optimum placement of actuators. Fiber orientation of the MFC has few and limited influences on results. Additionally, the voltage applied on MFC has strong effects on the results and they must be selected according to applied model.

2010 ◽  
Vol 29-32 ◽  
pp. 1458-1463 ◽  
Author(s):  
Jin Yun Liu ◽  
Jian Yun Chen

Three basic types of similar relationship between the prototype and the model for dynamic structural model test and dynamic destructive model test were proposed in corresponding literatures. At the time the situation where various similar relationships are applicable and the technique to ensure similarity for the different goal was discussed. Here the numerical simulation of model test of water-conveyance tunnel concerning fluid-structure interaction in soft soil is studied. Based on economy and practicability of selective material for model test, the similar relationship and the technique are proposed, which are validated through the example. The results of numerical simulation show: under the specific conditions, data of the model test can completely transfer to those of the prototype by use of this type of similar skill, and get more useful information. Some new ideas are introduced to keep the similarity of the hydro-structure structures.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Y. Bazilevs ◽  
A. Korobenko ◽  
X. Deng ◽  
J. Yan ◽  
M. Kinzel ◽  
...  

Full-scale, 3D, time-dependent aerodynamics and fluid–structure interaction (FSI) simulations of a Darrieus-type vertical-axis wind turbine (VAWT) are presented. A structural model of the Windspire VAWT (Windspire energy, http://www.windspireenergy.com/) is developed, which makes use of the recently proposed rotation-free Kirchhoff–Love shell and beam/cable formulations. A moving-domain finite-element-based ALE-VMS (arbitrary Lagrangian–Eulerian-variational-multiscale) formulation is employed for the aerodynamics in combination with the sliding-interface formulation to handle the VAWT mechanical components in relative motion. The sliding-interface formulation is augmented to handle nonstationary cylindrical sliding interfaces, which are needed for the FSI modeling of VAWTs. The computational results presented show good agreement with the field-test data. Additionally, several scenarios are considered to investigate the transient VAWT response and the issues related to self-starting.


Author(s):  
Carlos Pantano-Rubino ◽  
Kostas Karagiozis ◽  
Ramji Kamakoti ◽  
Fehmi Cirak

This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy.


2014 ◽  
Vol 26 (5) ◽  
pp. 638-648 ◽  
Author(s):  
Wenjing Zhao ◽  
◽  
Aiguo Ming ◽  
Makoto Shimojo ◽  
Yohei Inoue ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/13.jpg"" width=""300"" />Model of soft robotic fish</div> Designing a high-performance soft robotic fish requires considering the interaction between the flexible robot structure and surrounding fluid. This paper introduces fluid-structure interaction (FSI) analysis used to enhance the hydrodynamic performance of soft robotic fish using piezoelectric fiber composite (PFC) as the propulsion actuator. The basic FSI analysis scheme for soft robotic fish is presented, then the numerical model of the actuator, robot structure, and surrounding fluid are described based on the FSI analysis scheme. The FSI analysis of the soft robotic fish is performed through these numerical models. To evaluate the effectiveness of FSI analysis, coupling simulation and experimental results are compared. We found that the calculated results of propulsive force and deformation displacement were similar to those for experiments. These results suggest that FSI analysis is useful and is applicable to evaluating propulsion characteristics of the soft robotic fish to improve performance. </span>


1986 ◽  
Vol 108 (3) ◽  
pp. 249-255 ◽  
Author(s):  
T. Belytschko ◽  
M. Karabin ◽  
J. I. Lin

In the waterhammer analysis of piping systems, incompressible (or added mass) representations are generally used in computing the response of the piping. It is shown that this procedure is not necessarily conservative, particularly for thin-walled, flexible piping systems, and that fully coupled fluid-structure solutions can predict higher loads and stresses. A modal recovery procedure which easily permits the representation on the acoustic effects of the fluid to be included in a structural model is also presented. Results are given for both simple models and a piping system from an LMFBR design.


2001 ◽  
Vol 105 (1046) ◽  
pp. 215-221 ◽  
Author(s):  
G. S. L. Goura ◽  
K. J. Badcock ◽  
M. A. Woodgate ◽  
B. E. Richards

AbstractThis paper presents and illustrates an interpolation method for the exchange of displacement data between fluid and structural meshes in a fluid-structure interaction simulation. The method is a local method where element volume conservation is central, and does not rely on information from the structural model. Results are evaluated for several two and three dimensional problems. Comparisons with the infinite plate spline method show that the new method gives a more realistic representation of the recovered surface than currently used methods.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
A. Albadawi ◽  
M. Specklin ◽  
R. Connolly ◽  
Y. Delauré

This paper describes a fluid-structure interaction (FSI) model for the study of flexible cloth-like structures or the so-called rags in flows through centrifugal pumps. The structural model and its coupling to the flow solver are based on a Lagrangian formulation combining structural deformation and motion modeling coupled to a sharp interface immersed boundary model (IBM). The solution has been implemented in the open-source library OpenFOAM relying in particular on its PIMPLE segregated Navier–Stokes pressure–velocity coupling and its detached eddy simulation (DES) turbulence model. The FSI solver is assessed in terms of its capability to generate consistent deformations and transport of the immersed flexible structures. Two benchmark cases are covered and both involve experimental validation with three-dimensional (3D) structural deformations of the rag captured using a digital image correlation (DIC) technique. Simulations of a rag transported in a centrifugal pump confirm the suitability of the model to inform on the dynamic behavior of immersed structures under practical engineering conditions.


Author(s):  
Francesco Mario Antonio Mitrotta ◽  
Jurij Sodja ◽  
Andrea Sciacchitano

Abstract This study describes a novel measurement approach for combined flow and structural measurements in wind tunnels using Robotic Volumetric PTV. The measurement approach is based on the application of a particle tracking algorithm on images including flow or structure tracers, where the latter are implemented by means of fiducial markers. The main steps of the measurement procedure comprise the simultaneous acquisition of flow and structure tracers in the same images, the distinction of the tracers leading to separate flow and structure image sets, the application of Lagrangian Particle Tracking and the further post-processing, and recombination of the obtained data. The approach is applied to the fluid-structure interaction between a flexible plate with a span of 1.2 m and a periodic gust. The total measurement volume amounts approximately to 150 liters. A phase-averaged description of the fluid-structure interaction problem is presented, with the focus on the effects of the spatio-temporal averaging of the flow information. The structural displacements obtained from the PTV system are validated against a scanning vibrometer. The phase-averaged displacement of the markers is also analyzed, assessing both the validity of the phase-averaged approach and the physical coherence of their motion with respect to a structural model of the plate. It is found that Robotic Volumetric PTV is suitable for the measurement of large-scale structural displacements, while it should not be used to measure small-scale vibrations. Finally, a visualization of the combined measurement is presented, together with an analysis of the consistency between the measured structure and flow field.


Sign in / Sign up

Export Citation Format

Share Document