Characterization and Design of Programmable Self-Folding Polymer Films

Author(s):  
Derosh George ◽  
Marc Madou ◽  
Edwin A. Peraza Hernandez

Abstract This paper presents the characterization and design aspects of a novel fabrication method that integrates photolithography and self-folding to create polymer polyhedral structures. A two-step UV exposure process is used to produce patterned polymer films with flexible folds of low cross-linking density and stiff faces of high cross-linking density. Solvent is diffused into the folds during the development step of the photolithography process due to their low cross-linking density. The solvent concentration is non-uniform across the thickness of the folds and causes a strain gradient at these regions when the solvent is removed by heating the films, which enables self-folding. Experiments are performed to calibrate an equation that relates the dimensions of the folds and their achieved fold angle. An analytical model is introduced to elucidate the form of the equation and provide physical meaning to the calibration parameter. The formula is incorporated into a computational implementation of the unfolding polyhedra method that considers smoothly bent folds. This method, enhanced with the experimentally calibrated formula, enables the design of planar films programmed to self-fold into target three-dimensional shapes when heated. Polyhedral shapes are fabricated to demonstrate the developed method for origami-based fabrication. A parametric study quantifying the accuracy of the designed polyhedral forms with smooth folds as compared against those with idealized creased folds is performed.

2003 ◽  
Vol 771 ◽  
Author(s):  
M. Kemerink ◽  
S.F. Alvarado ◽  
P.M. Koenraad ◽  
R.A.J. Janssen ◽  
H.W.M. Salemink ◽  
...  

AbstractScanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current, which can amount to more than an order of magnitude, and can even change the polarity of the dominant charge carrier. As a direct consequence, the single-particle band gap and band alignment of the organic material can be directly obtained from tip height-voltage (z-V) curves, provided that the tip has a sufficiently sharp apex.


2018 ◽  
Vol 156 ◽  
pp. 259-268 ◽  
Author(s):  
Marianne Vandenbossche ◽  
Johanna Dorst ◽  
Martin Amberg ◽  
Urs Schütz ◽  
Patrick Rupper ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 32-33
Author(s):  
M. F. Schmid ◽  
P. Matsudaira ◽  
M. T. Dougherty ◽  
M. B. Sherman ◽  
C. Henn ◽  
...  

Collaboration between local microscopists and image processing specialists, and their remote biological colleagues, has been hampered by the difficulty of i) transferring the three-dimensional reconstructions of macromolecules resulting from the cryomicroscopy and image processing, ii) viewing the results in a meaningful way, and iii) communicating the results and the interpretations derived therefrom to each other.The acrosomal process is an intracellular quasi-crystalline organelle in the head of the sperm of the horseshoe crab Limulus polyphemus. It consists of 100 - 130 actin-scruin filaments packed together in a pseudo-hexagonal lattice and is up to 60 μm long with a diameter of 0.1 μm. Scruin-scruin interactions are responsible for cross-linking the actin filaments together in the bundle. Our goal was to reveal interfilament interactions in the bundle. We have taken tilt series images in the electron microscope to reconstruct its three-dimensional structure at 45 Å resolution.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Johnny E. Moore ◽  
Davide Schiroli ◽  
C. B. Tara Moore

Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies donein vitroorex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.


1992 ◽  
Vol 271 ◽  
Author(s):  
Kevin J. Thorne ◽  
Stephen E. Johnson ◽  
Haixing Zheng ◽  
John D. Mackenzie ◽  
M. F Hawthorne

ABSTRACTTo prepare new polycarbosilane polymer precursors with high solubility and the capability of UV cross-linking, commercial polycarbosilane was modified by a chemical route. These modifications involved AlCl3 catalyzed chlorination reactions of polycarbosilane's Si-H bonds. The resultant Si-Cl bonds were substituted by a reaction with sodium acetylyde to form Si-C=CH ligands. These ligands are suitable for controlled, free radical initiated cross-linking of the polycarbosilane polymers. The increase in molecular weight should allow for increased Tg's and the retention of polymer pre-forms. In this report, the chlorination of the polycarbosilane polymer and the substitution reactions of polycarbosilane were examined with IR, 29Si and 13C NMR spectroscopy. In addition, the retention of polymer pre-forms were analyzed after UV exposure and inert atmosphere pyrolysis.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat7629 ◽  
Author(s):  
Hiroaki Gotoh ◽  
Chang Liu ◽  
Abu Bin Imran ◽  
Mitsuo Hara ◽  
Takahiro Seki ◽  
...  

An elastomer is a three-dimensional network with a cross-linked polymer chain that undergoes large deformation with a small external force and returns to its original state when the external force is removed. Because of this hyperelasticity, elastomers are regarded as one of the best candidates for the matrix material of soft robots. However, the comprehensive performance required of matrix materials is a special challenge because improvement of some matrix properties often causes the deterioration of others. For example, an improvement in toughness can be realized by adding a large amount of filler to an elastomer, but to the impairment of optical transparency. Therefore, to produce an elastomer exhibiting optimum properties suitable for the desired purpose, very elaborate, complicated materials are often devised. Here, we have succeeded in creating an optically transparent, easily fabricated elastomer with good extensibility and high toughness by using a polyrotaxane (PR) composed of cyclic molecules and a linear polymer as a cross-linking agent. In general, elastomers having conventional cross-linked structures are susceptible to breakage as a result of loss of extensibility at high cross-linking density. We found that the toughness of the transparent elastomer prepared using the PR cross-linking agent is enhanced along with its Young’s modulus as cross-linking density is increased.


2020 ◽  
Author(s):  
Thaksen Jadhav ◽  
Yuan Fang ◽  
Cheng-Hao Liu ◽  
Afshin Dadvand ◽  
Ehsan Hamzehpoor ◽  
...  

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2+2] cycloaddition cross-linking the π-stacked layers in 3D COFs. The reaction is reversible and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-Vis absorption, altered luminescence, modified band structure and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant ion conductivity of 1.8×10<sup>−4</sup> S/cm and 3.5×10<sup>−5</sup> S/cm, respectively. Even higher room temperature proton conductivity of 1.7×10<sup>-2</sup> S/cm and 2.2×10<sup>-3</sup> S/cm was found for H<sub>2</sub>SO<sub>4</sub>-treated 2D and 3D COFs, respectively.


2021 ◽  
Author(s):  
Stephan Förster ◽  
Jürgen Groll ◽  
Benjamin Reineke ◽  
Stephan Hauschild ◽  
Ilona Paulus ◽  
...  

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication. <br>


Sign in / Sign up

Export Citation Format

Share Document