scholarly journals Detection of evaporation process of acetone with a microstructured fiber in a reflective configuration

2014 ◽  
Vol 53 (8) ◽  
pp. 080501 ◽  
Author(s):  
Susana O. Silva ◽  
Jean-Louis Auguste ◽  
Raphael Jamier ◽  
Sébastien Rougier ◽  
Jose M. Baptista ◽  
...  
Author(s):  
H.C. Eaton ◽  
B.N. Ranganathan ◽  
T.W. Burwinkle ◽  
R. J. Bayuzick ◽  
J.J. Hren

The shape of the emitter is of cardinal importance to field-ion microscopy. First, the field evaporation process itself is closely related to the initial tip shape. Secondly, the imaging stress, which is near the theoretical strength of the material and intrinsic to the imaging process, cannot be characterized without knowledge of the emitter shape. Finally, the problem of obtaining quantitative geometric information from the micrograph cannot be solved without knowing the shape. Previously published grain-boundary topographies were obtained employing an assumption of a spherical shape (1). The present investigation shows that the true shape deviates as much as 100 Å from sphericity and boundary reconstructions contain considerable error as a result.Our present procedures for obtaining tip shape may be summarized as follows. An empirical projection, D=f(θ), is obtained by digitizing the positions of poles on a field-ion micrograph.


2018 ◽  
Vol 3 (2) ◽  
pp. 38-47
Author(s):  
Muhammad Abdul Azis ◽  
Nuryake Fajaryati

This research aims to create a Reosquido desalination tool for evaporation methods using a microcontroller. This tool can control the temperature to speed up the evaporation process in producing fresh water. The method applied to Reosquido desalination uses Evaporation. The first process before evaporation is the detection of temperature in sea water that will be heated using an element heater. The second process of temperature measurement is to turn off and turn on the Arduino Uno controlled heater, when the temperature is less than 80 ° then the heater is on. The third process is evaporation during temperatures between 80 ° to 100 °, evaporation water sticks to the glass roof which is designed by pyramid. Evaporated water that flows into the reservoir is detected by its solubility TDS value. The fourth process is heater off when the temperature is more than 100 °. Based on the results of the testing, the desalination process using a microcontroller controlled heater can speed up the time up to 55% of the previous desalination process tool, namely manual desalination prsoes without using the heater element controlled by the temperature and controlled by a microcontroller which takes 9 hours. Produces fresh water as much as 30ml from 3000ml of sea water, so that it can be compared to 1: 100.


2021 ◽  
Vol 218 ◽  
pp. 106863
Author(s):  
Heng Chen ◽  
Fengjun Liu ◽  
Chenjian Cai ◽  
Lingxiao Zhan ◽  
Liyan Gu ◽  
...  

2021 ◽  
pp. 108201322199161
Author(s):  
Merve Tuçe Tunç ◽  
Arda Akdoğan ◽  
Cemalettin Baltacı ◽  
Zeliha Kaya ◽  
Halil İbrahim Odabaş

Pekmez is a concentrated syrup-like food conventionally produced by vacuum evaporation process from sugar-rich fruits. In this study, the applicability of grape pekmez production by ohmic heating assisted vacuum evaporation (ΩVE) method was investigated. Conventional vacuum evaporation (CVE) and ΩVE methods were compared in terms of physicochemical properties, HMF (5-hydroxymethylfurfural) contents, rheological properties, and energy consumptions. ΩVE was run at four different voltage gradients (17.5, 20, 22.5, and 25 V/cm). Total process times for grape pekmez production were determined as 57, 28.5, 32, 39, and 50 minutes for CVE, ΩVE (25 V/cm), ΩVE (22.5 V/cm), ΩVE (20 V/cm) and ΩVE (17.5 V/cm), respectively. Energy consumption of CVE method was higher than ΩVE method for all voltage gradients. Energy efficiency increased as the voltage gradient increased. There was no significant difference between CVE and ΩVE methods for HMF contents. The results show that the ΩVE method could be an alternative to the CVE process for grape pekmez production.


Sign in / Sign up

Export Citation Format

Share Document