Material removal mechanism and material removal rate model of polishing process for quartz glass using soft particle

2015 ◽  
Author(s):  
Defu Liu ◽  
Guanglin Chen ◽  
Qing Hu
2014 ◽  
Vol 592-594 ◽  
pp. 516-520 ◽  
Author(s):  
Basil Kuriachen ◽  
Jose Mathew

Micro EDM milling process is accruing a lot of importance in micro fabrication of difficult to machine materials. Any complex shape can be generated with the help of the controlled cylindrical tool in the pre determined path. Due to the complex material removal mechanism on the tool and the work piece, a detailed parametric study is required. In this study, the influence of various process parameters on material removal mechanism is investigated. Experiments were planned as per Response Surface Methodology (RSM) – Box Behnken design and performed under different cutting conditions of gap voltage, capacitance, electrode rotation speed and feed rate. Analysis of variance (ANOVA) was employed to identify the level of importance of machining parameters on the material removal rate. Maximum material removal rate was obtained at Voltage (115V), Capacitance (0.4μF), Electrode rotational Speed (1000rpm), and Feed rate (18mm/min). In addition, a mathematical model is created to predict the material removal


2006 ◽  
Vol 304-305 ◽  
pp. 555-559 ◽  
Author(s):  
Chang He Li ◽  
Guang Qi Cai ◽  
Shi Chao Xiu ◽  
Q. Li

The material removal rate (MRR) model was investigated in abrasive jet precision finishing (AJPF) with wheel as restraint. When abrasive wore and workpiece surface micro-protrusion removed, the size ratio for characteristic particle size to minimum film thickness gradually diminishing, the abrasive machining from two-body lapping to three-body polishing transition in AJPF with grinding wheel as restraint. In the study, the material removal rate model was established according to machining mechanisms and machining modes from two-body to three-body process transition condition, and active number of particles in grinding zone were calculated and simulated. Experiments were performed in the plane grinder for material removal mechanism and academic models verification. It can be observed from experimental results that the surface morphology change dramatically to a grooved or micro-machined surface with all the grooves aligned in the sliding direction in two-body lapping mode. On the other hand, the surface is very different, consists of a random machining pits with very little sign of any directionality to the deformation in the three-body machining mode. Furthermore, the material removal rate model was found to give a good description of the experimental results.


2017 ◽  
Vol 739 ◽  
pp. 182-186
Author(s):  
Hung Jung Tsai ◽  
Pay Yau Huang ◽  
Chung Ming Tan ◽  
Tang Feng Chang

The hydrolytic properties of LiAlO2 (LAO) are important factors for its applications on LED fabrication. During soft pad polishing process, the H2O in the slurry is deleterious for LAO surface polishing results. The current study develops a material removal rate model for materials with hydrolysis reaction to predict the result of polishing process.The current research conducts the experimental studies to investigate the material removal rate and its mechanism during the soft pad polishing process. In the experimental study, the hydrolytic properties of LAO have been tested to understand the hydrolysis speed with different operation parameters to assist the development of the theoretical model. Also the material removal rates of LAO with hydrolytic property have been measured under different soft pad polishing operating conditions. The experimental results provide the hydrolytic properties of LiAlO2 to understanding of the mechanism on polishing process.


2014 ◽  
Vol 538 ◽  
pp. 40-43
Author(s):  
Hong Wei Du ◽  
Yan Ni Chen

In this paper, material removal mechanism of monocrystalline silicon by chemical etching with different solutions were studied to find effective oxidant and stabilizer. Material removal mechanism by mechanical loads was analyzed based on the measured acoustic signals in the scratching processes and the observation on the scratched surfaces of silicon wafers. The chemical mechanical polishing (CMP) processes of monocrystalline silicon wafers were analyzed in detail according to the observation and measurement of the polished surfaces with XRD. The results show that H2O2 is effective oxidant and KOH stabilizer. In a certain range, the higher concentration of oxidant, the higher material removal rate; the higher the polishing liquid PH value, the higher material removal rate. The polishing pressure is an important factor to obtain ultra-smooth surface without damage. Experimental results obtained silicon polishing pressure shall not exceed 42.5kPa.


2005 ◽  
Vol 127 (1) ◽  
pp. 190-197 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Pay-Yau Huang

Chemical Mechanical Polishing (CMP) is a highly effective technique for planarizing wafer surfaces. Consequently, considerable research has been conducted into its associated material removal mechanisms. The present study proposes a CMP material removal rate model based upon a micro-contact model which considers the effects of the abrasive particles located between the polishing interfaces, thereby the down force applied on the wafer is carried both by the deformation of the polishing pad asperities and by the penetration of the abrasive particles. It is shown that the current theoretical results are in good agreement with the experimental data published previously. In addition to such operational parameters as the applied down force, the present study also considers consumable parameters rarely investigated by previous models based on the Preston equation, including wafer surface hardness, slurry particle size, and slurry concentration. This study also provides physical insights into the interfacial phenomena not discussed by previous models, which ignored the effects of abrasive particles between the polishing interfaces during force balancing.


2009 ◽  
Vol 69-70 ◽  
pp. 158-162 ◽  
Author(s):  
Yu Wang ◽  
Shao Hui Yin ◽  
Takeo Shinmura

In this paper, it is explored the material removal mechanism in vibration-assisted finishing process. On the basis of some experiments, the finishing characteristics are represented summarily. Though the analysis, it is shown that the vibration assistance method may increase cutting distance and speed of abrasive and material removal in per unit finishing distance which is affected by vibration frequency and amplitude, in-process abrasives behavior. What more, the increase in material removal rate is mainly due to an increase in material removal per unit finishing distance which is affected by the effects of abrasives cross-cutting.


2021 ◽  
Author(s):  
Yingdong Liang ◽  
Chao Zhang ◽  
Xin Chen ◽  
Tianqi Zhang ◽  
Tianbiao Yu ◽  
...  

Abstract The emergence of ultrasonic vibration-assisted polishing technology has effectively improved the machining accuracy and efficiency of hard and brittle materials in modern optical industry, however, the material removal mechanism of ultrasonic vibration-assisted polishing (UVAP) still needs to be further revealed. This paper focuses on the material removal mechanism of ultrasonic vibration-assisted polishing of optical glass (BK7), the application of ultrasonic vibration to axial vibration and the atomization of polishing slurry, the material removal model was established. Based on the analysis of the relationship between the nominal distance d of the polishing pad and the actual contact area distribution, the prediction of the material removal profile is realized. In addition, the effects of different parameters on the material removal rate (MRR) were analyzed, including polishing force, spindle speed, abrasive particle size, ultrasonic amplitude, feed rate, and flow-rate of polishing slurry. Based on the motion equation of abrasive particles, the trajectory of abrasive particles in the polishing slurry was simulated, and the simulation results show that the introduction of the ultrasonic vibration field changes the motion state and trajectory of embedded and free abrasive particles. The new model can not only qualitatively analyze the influence of different process parameters on MRR, but also predict the material removal depth and MRR, providing a possibility for deterministic material removal and a theoretical basis for subsequent polishing of complex curved surfaces of optical glass.


Sign in / Sign up

Export Citation Format

Share Document