Structural modeling and strength characteristics of optical system in strong impact environment

Author(s):  
Chunyong Wang ◽  
Xiaobin Hua ◽  
Jiancheng Lai ◽  
Zhenhua Li ◽  
Yunjing Ji ◽  
...  
Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
B. Roy Frieden

Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.


Author(s):  
J T Fourie

The attempts at improvement of electron optical systems to date, have largely been directed towards the design aspect of magnetic lenses and towards the establishment of ideal lens combinations. In the present work the emphasis has been placed on the utilization of a unique three-dimensional crystal objective aperture within a standard electron optical system with the aim to reduce the spherical aberration without introducing diffraction effects. A brief summary of this work together with a description of results obtained recently, will be given.The concept of utilizing a crystal as aperture in an electron optical system was introduced by Fourie who employed a {111} crystal foil as a collector aperture, by mounting the sample directly on top of the foil and in intimate contact with the foil. In the present work the sample was mounted on the bottom of the foil so that the crystal would function as an objective or probe forming aperture. The transmission function of such a crystal aperture depends on the thickness, t, and the orientation of the foil. The expression for calculating the transmission function was derived by Hashimoto, Howie and Whelan on the basis of the electron equivalent of the Borrmann anomalous absorption effect in crystals. In Fig. 1 the functions for a g220 diffraction vector and t = 0.53 and 1.0 μm are shown. Here n= Θ‒ΘB, where Θ is the angle between the incident ray and the (hkl) planes, and ΘB is the Bragg angle.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


2020 ◽  
Vol 477 (2) ◽  
pp. 459-459
Author(s):  
Lalith K. Chaganti ◽  
Shubhankar Dutta ◽  
Raja Reddy Kuppili ◽  
Mriganka Mandal ◽  
Kakoli Bose

Author(s):  
Robert Brochin ◽  
Jashvant Poeran ◽  
Khushdeep S. Vig ◽  
Aakash Keswani ◽  
Nicole Zubizarreta ◽  
...  

AbstractGiven increasing demand for primary knee arthroplasties, revision surgery is also expected to increase, with periprosthetic joint infection (PJI) a main driver of costs. Recent data on national trends is lacking. We aimed to assess trends in PJI in total knee arthroplasty revisions and hospitalization costs. From the National Inpatient Sample (2003–2016), we extracted data on total knee arthroplasty revisions (n = 782,449). We assessed trends in PJI prevalence and (inflation-adjusted) hospitalization costs (total as well as per-day costs) for all revisions and stratified by hospital teaching status (rural/urban by teaching status), hospital bed size (≤299, 300–499, and ≥500 beds), and hospital region (Northeast, Midwest, South, and West). The Cochran–Armitage trend test (PJI prevalence) and linear regression determined significance of trends. PJI prevalence overall was 25.5% (n = 199,818) with a minor increasing trend: 25.3% (n = 7,828) in 2003 to 28.9% (n = 19,275) in 2016; p < 0.0001. Median total hospitalization costs for PJI decreased slightly ($23,247 in 2003–$20,273 in 2016; p < 0.0001) while median per-day costs slightly increased ($3,452 in 2003–$3,727 in 2016; p < 0.0001), likely as a function of decreasing length of stay. With small differences between hospitals, the lowest and highest PJI prevalences were seen in small (≤299 beds; 22.9%) and urban teaching hospitals (27.3%), respectively. In stratification analyses, an increasing trend in PJI prevalence was particularly seen in larger (≥500 beds) hospitals (24.4% in 2003–30.7% in 2016; p < 0.0001), while a decreasing trend was seen in small-sized hospitals. Overall, PJI in knee arthroplasty revisions appears to be slightly increasing. Moreover, increasing trends in large hospitals and decreasing trends in small-sized hospitals suggest a shift in patients from small to large volume hospitals. Decreasing trends in total costs, alongside increasing trends in per-day costs, suggest a strong impact of length of stay trends and a more efficient approach to PJI over the years (in terms of shorter length of stay).


Author(s):  
A. P. Ponomarev ◽  
L. G. Kolyada ◽  
E. V. Tarasyuk

Metal products are subjected to atmospheric corrosion during transportation and storing. An important way to prevent this negative phenomenon is application of special packing materials, in particular materials, containing volatile inhibitors of corrosion, which protect metal against various corrosion agents. To protect metal effectively it is necessary to provide a definite level of operating characteristics of packing materials. The purpose of the work was the study of operating properties of inhibited crepe, inhibited and laminated polyethylene film, inhibited crepe and reinforced by polypropylene web papers, manufactured by OJSC “PP TechnoKhim”, Magnitogorsk, used for packing of metals. Structural and dimensional, sorption, deformation and strength characteristics, of the studied anticorrosion papers are presented, the characteristics being calculated based on the results of measurements. To determine their physical-mechanical and anticorrosion properties, standard methods and methodologies were used. To evaluate impact of moisture and transportation conditions, indices of water adsorption and wear of the studied papers were determined. Inhibitor content in these materials was determined by thermogravimetric analysis method. Their protective ability was studied on samples of low carbon steel strip. For accelerated corrosion tests the strip samples were degreased by alcohol, dried in air and packed in the studied anticorrosion papers, after that they were exposed under increased temperatures and moisture conditions. It was determined, that among the materials under the study, the inhibited crepe paper, reinforced by polypropylene web, hhas the best complex of physical-mechanical and anticorrosion properties. It provides a higher level of prevention corrosion of metal l and surpasses other materials in a number of deformation and strength characteristics. Recommendations were proposed to improve qquality of produced anticorrosion papers.


Sign in / Sign up

Export Citation Format

Share Document