Robust reconstruction of fluorescence molecular tomography based on a two-stage matching pursuit method for in vivo orthotopic hepatocellular carcinoma xenograft mouse model

Author(s):  
Jie Tian ◽  
Lin Yin ◽  
Kun Wang
Small ◽  
2015 ◽  
Vol 12 (4) ◽  
pp. 477-487 ◽  
Author(s):  
Kui Wang ◽  
Forrest M. Kievit ◽  
Jonathan G. Sham ◽  
Mike Jeon ◽  
Zachary R. Stephen ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Maximilian Neidhardt ◽  
Nils Gessert ◽  
Tobias Gosau ◽  
Julia Kemmling ◽  
Susanne Feldhaus ◽  
...  

AbstractMinimally invasive robotic surgery offer benefits such as reduced physical trauma, faster recovery and lesser pain for the patient. For these procedures, visual and haptic feedback to the surgeon is crucial when operating surgical tools without line-of-sight with a robot. External force sensors are biased by friction at the tool shaft and thereby cannot estimate forces between tool tip and tissue. As an alternative, vision-based force estimation was proposed. Here, interaction forces are directly learned from deformation observed by an external imaging system. Recently, an approach based on optical coherence tomography and deep learning has shown promising results. However, most experiments are performed on ex-vivo tissue. In this work, we demonstrate that models trained on dead tissue do not perform well in in vivo data. We performed multiple experiments on a human tumor xenograft mouse model, both on in vivo, perfused tissue and dead tissue. We compared two deep learning models in different training scenarios. Training on perfused, in vivo data improved model performance by 24% for in vivo force estimation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


Author(s):  
Thi-Thu Nguyen ◽  
Anh-Son Ho ◽  
Thi-Khanh-Giang Nguyen ◽  
Thi-Ngoc Nguyen ◽  
Van-Cuong Bui ◽  
...  

2013 ◽  
Vol 14 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Eun-Young Kim ◽  
Sang Soo Lee ◽  
Ji Hoon Shin ◽  
Soo Hyun Kim ◽  
Dong-Ho Shin ◽  
...  

2014 ◽  
Vol 54 (10) ◽  
pp. 971-985 ◽  
Author(s):  
Muthu K. Shanmugam ◽  
Peramaiyan Rajendran ◽  
Feng Li ◽  
Chulwon Kim ◽  
Sakshi Sikka ◽  
...  

2020 ◽  
Author(s):  
cong fang ◽  
Yahui Liu ◽  
Lanying Chen ◽  
Yingying Luo ◽  
Yaru Cui ◽  
...  

Abstract Background: α-hederin an effective component of Pulsatilla chinensis (Bunge) Regel, Studies showed that α-hederin exert many pharmacological activities, However, the effect of α-hederin on metabolism is still unclear. This study aimed to illuminate the role of α-hederin in glucose metabolism in lung cancer cells and investigate the molecular mechanism of α-hederin. Methods: CCK8 and colony formation assays were employed to assess the anti-proliferative effects induced by α-hederin. Glucose uptake, ATP generation, and reduced lactate production were measured using kits, and an A549 tumor xenograft mouse model of lung cancer was used to assess the in vivo antitumor effect of α-hederin (5, 10 mg/kg). Glycolytic-related key enzymes hexokinase 2 (HK2), glucose transporters 1 (GLUT1), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter (MCT4), c-Myc, Hypoxia inducible factor-1α (HIF-1α) and Sirtuin 6 (SIRT6) protein expression were detected by western blotting and immunohistochemical staining and SIRT6 inhibitors was verified in A549 cells. Results: Our results showed that cell proliferation was significantly inhibited by α-hederin in a dose-dependent manner and that α-hederin inhibited glucose uptake and ATP generation and reduced lactate production. Furthermore, α-hederin remarkably inhibited HK2, GLUT1, PKM2, LDHA, MCT4, c-Myc, HIF-1α and activated SIRT6 protein expression. Using inhibitors, we proved that α-hederin inhibits glycolysis by activating SIRT6. Moreover, a tumor xenograft mouse model of lung cancer further confirmed that α-hederin inhibits lung cancer growth via inhibiting glycolysis in vivo. Conclusions: α-hederin inhibits the growth of non-small cell lung cancer A549 cells by inhibiting glycolysis. The mechanism of glycolysis inhibition includes α-hederin activating the expression of the glycolytic related protein SIRT6.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 393 ◽  
Author(s):  
Lulu Xie ◽  
Minjing Li ◽  
Desheng Liu ◽  
Xia Wang ◽  
Peiyuan Wang ◽  
...  

Liver cancer is a very common and significant health problem. Therefore, powerful molecular targeting agents are urgently needed. Previously, we demonstrated that secalonic acid-F (SAF) suppresses the growth of hepatocellular carcinoma (HCC) cells (HepG2), but the other anticancer biological functions and the underlying mechanism of SAF on HCC are unknown. In this study, we found that SAF, which was isolated from a fungal strain in our lab identified as Aspergillus aculeatus, could inhibit the progression of hepatocellular carcinoma by targeting MARCH1, which regulates the PI3K/AKT/β-catenin and antiapoptotic Mcl-1/Bcl-2 signaling cascades. First, we confirmed that SAF reduced the proliferation and colony formation of HCC cell lines (HepG2 and Hep3B), promoted cell apoptosis, and inhibited the cell cycle in HepG2 and Hep3B cells in a dose-dependent manner. In addition, the migration and invasion of HepG2 and Hep3B cells treated with SAF were significantly suppressed. Western blot analysis showed that the level of MARCH1 was downregulated by pretreatment with SAF through the regulation of the PI3K/AKT/β-catenin signaling pathways. Moreover, knockdown of MARCH1 by small interfering RNAs (siRNAs) targeting MARCH1 also suppressed the proliferation, colony formation, migration, and invasion as well as increased the apoptotic rate of HepG2 and Hep3B cells. These data confirmed that the downregulation of MARCH1 could inhibit the progression of hepatocellular carcinoma and that the mechanism may be via PI3K/AKT/β-catenin inactivation as well as the downregulation of the antiapoptotic Mcl-1/Bcl-2. In vivo, the downregulation of MARCH1 by treatment with SAF markedly inhibited tumor growth, suggesting that SAF partly blocks MARCH1 and further regulates the PI3K/AKT/β-catenin and antiapoptosis Mcl-1/Bcl-2 signaling cascade in the HCC nude mouse model. Additionally, the apparent diffusion coefficient (ADC) values, derived from magnetic resonance imaging (MRI), were increased in tumors after SAF treatment in a mouse model. Taken together, our findings suggest that MARCH1 is a potential molecular target for HCC treatment and that SAF is a promising agent targeting MARCH1 to treat liver cancer patients.


Sign in / Sign up

Export Citation Format

Share Document