scholarly journals Secalonic Acid-F, a Novel Mycotoxin, Represses the Progression of Hepatocellular Carcinoma via MARCH1 Regulation of the PI3K/AKT/β-catenin Signaling Pathway

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 393 ◽  
Author(s):  
Lulu Xie ◽  
Minjing Li ◽  
Desheng Liu ◽  
Xia Wang ◽  
Peiyuan Wang ◽  
...  

Liver cancer is a very common and significant health problem. Therefore, powerful molecular targeting agents are urgently needed. Previously, we demonstrated that secalonic acid-F (SAF) suppresses the growth of hepatocellular carcinoma (HCC) cells (HepG2), but the other anticancer biological functions and the underlying mechanism of SAF on HCC are unknown. In this study, we found that SAF, which was isolated from a fungal strain in our lab identified as Aspergillus aculeatus, could inhibit the progression of hepatocellular carcinoma by targeting MARCH1, which regulates the PI3K/AKT/β-catenin and antiapoptotic Mcl-1/Bcl-2 signaling cascades. First, we confirmed that SAF reduced the proliferation and colony formation of HCC cell lines (HepG2 and Hep3B), promoted cell apoptosis, and inhibited the cell cycle in HepG2 and Hep3B cells in a dose-dependent manner. In addition, the migration and invasion of HepG2 and Hep3B cells treated with SAF were significantly suppressed. Western blot analysis showed that the level of MARCH1 was downregulated by pretreatment with SAF through the regulation of the PI3K/AKT/β-catenin signaling pathways. Moreover, knockdown of MARCH1 by small interfering RNAs (siRNAs) targeting MARCH1 also suppressed the proliferation, colony formation, migration, and invasion as well as increased the apoptotic rate of HepG2 and Hep3B cells. These data confirmed that the downregulation of MARCH1 could inhibit the progression of hepatocellular carcinoma and that the mechanism may be via PI3K/AKT/β-catenin inactivation as well as the downregulation of the antiapoptotic Mcl-1/Bcl-2. In vivo, the downregulation of MARCH1 by treatment with SAF markedly inhibited tumor growth, suggesting that SAF partly blocks MARCH1 and further regulates the PI3K/AKT/β-catenin and antiapoptosis Mcl-1/Bcl-2 signaling cascade in the HCC nude mouse model. Additionally, the apparent diffusion coefficient (ADC) values, derived from magnetic resonance imaging (MRI), were increased in tumors after SAF treatment in a mouse model. Taken together, our findings suggest that MARCH1 is a potential molecular target for HCC treatment and that SAF is a promising agent targeting MARCH1 to treat liver cancer patients.

2021 ◽  
Vol 11 ◽  
Author(s):  
Fei Chen ◽  
Meijun Li ◽  
Liang Wang

Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and the third leading cause of cancer-related deaths worldwide. Besides, it has been revealed that long non-coding RNA (LncRNA) cancer susceptibility candidate 11 (CASC11) is involved in cancer progression. However, the functional role and underlying mechanism of CASC11 in HCC remains largely unknown. In this context, here, it was found that CASC11 was upregulated in HCC tissues and associated with tumor grades, metastasis, and prognosis of HCC patients. Functionally, CASC11 facilitated HCC cell proliferation, migration, and invasion in vitro, and enhanced tumor growth and metastasis in vivo. Mechanistically, CASC11 associated with and stabilized Ubiquitin-conjugating enzyme E2T (UBE2T) mRNA. To be specific, it decreased UBE2T N6-methyladenosine (m6A) level via recruiting ALKBH5. Moreover, CASC11 inhibited the association between UBE2T mRNA and m6A reader protein YTHDF2. Taken together, our findings demonstrate the epigenetic mechanism of CASC11 in the regulation of UBE2T expression and possibly provide a novel therapeutic target for HCC treatment.


Author(s):  
Zeng Cheng Zou ◽  
Min Dai ◽  
Zeng Yin Huang ◽  
Yi Lu ◽  
He Ping Xie ◽  
...  

The direct roles of miR-139-3p on hepatocellular carcinoma (HCC) cell growth and metastasis remain poorly understood. We attempted to demonstrate the regulatory role of miR-139-3p in HCC progression and its underlying mechanisms. Here we showed that miR-139-3p expression was significantly reduced in the HCC tissues compared to paratumor tissues. Exogenous overexpression of miR-139-3p inhibited the migration and invasion of HCC cells, whereas downregulation of miR-139-3p was able to induce HCC HepG2 and SNU-449 cell migration and invasion. In addition, miR-139-3p inhibited HCC growth and lung metastasis in an in vivo mouse model, which is mainly regulated by annexin A2 receptor (ANXA2R). Finally, we identified that the expression of miR-139-3p was inversely correlated with ANXA2R expression in human HCC tissue. All these results demonstrated that miR-139-3p inhibited the metastasis process in HCC by downregulating ANXA2R expression.


Author(s):  
Yong Zhang ◽  
Liangsheng Miao ◽  
Huijuan Zhang ◽  
Gang Wu ◽  
Jianrui Lv

IntroductionThis study aimed to investigate the biological role of microRNA 93 (miR-93), a novel tumor-related miRNA, in human hepatocellular carcinoma (HCC) and elucidate the potential molecular mechanisms involved.Material and methodsQuantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-93 in HCC tissues and cell lines. The log-rank test and Kaplan-Meier survival analysis were performed to evaluate the relationship between miR-93 expression and overall survival. MTT assay, colony formation assay, Transwell migration and invasion assays were carried out to exam cell proliferation, colony formation, migration and invasion, respectively. Murine xenograft models were established to the effect of miR-93 on tumor growth in vivo. TargetScan online software was applied to predict the potential target of miR-93. Luciferase reporter assays were used to validate the direct binding of miR-93 and its putative target.ResultsHere we found that miR-93 was significantly down-regulated in HCC tissues and cell lines. Patients with decreased miR-93 expression had a significantly shorter overall survival. Functional investigations demonstrated miR-93 over-expression suppressed HCC cell proliferation, weakened clonogenic ability, and slowed down cell migration and invasion; whereas miR-93 depletion facilitated HCC cell proliferation, colony formation, cell migration and invasion. MiR-93 over-expression retarded tumor growth in vivo. Luciferase reporter assay and rescue assay revealed that zinc finger protein 322 (ZNF322) was a direct target of miR-93 and mediated the inhibitory effects of miR-93 on HCC cell proliferation and motility.ConclusionsOur data may provide some evidence for miR-93/ZNF322 axis a candidate therapeutic target for HCC.


2021 ◽  
Author(s):  
DengYong Zhang ◽  
FangFang Chen ◽  
ShuoShuo Ma ◽  
YongChun Zhou ◽  
Wanliang Sun ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) processes in multi-steps which involves the sophisticated interactions of genetics, epigenetics, and transcriptional changes. According to before investigations, methyltransferase-like 3 (METTL3)-mediated m6A modification regulates the development of various cancers by regulating gene stability. However, the studies focusing on miRNA’s regulatory effect of N6-methyladenosine (m6A) modification on HCC progression are still limited. Methods: Immunochemistry (IHC) staining detected the histopathological changes in the tumor tissues. Cell Counting Kit-8 (CCK-8), clone formation, and transwell assay investigated the changes in cancer cell proliferation, invasion, and migration. The RNA m6A level was confirmed by methylated RNA immunoprecipitation. The RNA stability assay indicated the half-life (t1/2) of RNA in HCC cells. The prognosis of the indicated patients’ cohort was analyzed using the cancer genome atlas (TCGA) datasets. Luciferase report analysis was used to study the potential binding between microRNA (miRNA) and mRNA. A mice tumor transplant model was further established to study the changes in tumor progression. Results: Follistatin-like 5 (FSTL5) was found to be significantly downregulated in HCC, and it inhibited the further progression of HCC. The RNA stability analysis indicated that the mRNA t1/2 gene of HCC cells was shortened. Besides, METTL3 reduced the stability of FSTL5 mRNA in a m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that the downregulated METTL3 inhibited the HCC progression by up-regulating FSTL5 in vitro and in vivo. Luciferase report analysis confirmed that miR-186-5p directly targeted the METTL3. Additionally, miR-186-5p inhibited the proliferation, migration, and invasion of HCC cells by downregulating METTL3. We identified that miR-186-5p prevented the HCC progression by targeting METTL3 to regulate m6A-mediated FSTL5 stabilization. Conclusions: The miR-186-5p/METTL3/YTHDF2/FSTL5 axis perhaps point out a new direction for the targeted therapy of HCC.


2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.


2021 ◽  
Author(s):  
Sangjoon Choi ◽  
Keun-Woo Lee ◽  
Hyun Hee Koh ◽  
Sujin Park ◽  
So-Young Yeo ◽  
...  

Abstract Background: ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8) has been known to play an important role in tumor regulation in various types of cancer. However, the results of ZMYND8 expression and their clinical significance in hepatocellular carcinoma (HCC) have not yet been published. In the present study, we investigate the expression of ZMYND8 protein and mRNA in HCC and elucidate its prognostic significance.Methods: ZMYND8 protein and mRNA expression in 283 and 234 HCCs were investigated using immunohistochemistry and quantitative real-time polymerase chain reactions. The relationships between ZMYND8 expression with clinicopathologic features and prognosis of HCC patients were evaluated. Furthermore, we performed the invasion, migration, apoptosis, soft agar formation assay and sphere formation assay in HCC cell lines, and evaluated tumorigenicity in a nude mouse model, after ZMYND8 knockdown. Results: Overexpression of ZMYND8 protein and mRNA was observed in 20.5% and 26.9% of HCC cases, respectively. High ZMYND8 expression showed significant correlations with microvascular invasion, high Edmondson grade, advanced American Joint Committee on Cancer (AJCC), and increased alpha-fetoprotein level. ZMYND8 mRNA overexpression was an independent prognostic factor for predicting early recurrence as well as short recurrence-free survival (RFS). Downregulation of ZMYND8 reduced migration and invasion of HCC cells, and promoted apoptosis of HCC cells in an in vitro model. In a xenograft nude mouse model, knockdown of ZMYND8 significantly reduced tumor growth.Conclusions: ZMYND8 mRNA overexpression could be a prognostic marker of shorter RFS in HCC patients after curative resection. ZMYND8 might play an important role in the proliferation and progression of HCC and could be a promising candidate for targeted therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lianggui Jiang ◽  
Wen-Chu Ye ◽  
Zuobiao Li ◽  
Yongguang Yang ◽  
Wei Dai ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) represents a serious public health problem worldwide and has high morbidity and mortality. Dihydromyricetin (DHM) exhibits anticancer effect on a variety of malignancies, but its anticancer function of DHM in HCC has been unclear. The aim of this study was designed to investigate the anticancer effect of DHM on cell apoptosis, proliferation, migration and invasion of hepatoma carcinoma cells. Methods Cultured Hep3B cells were treated with different DHM concentrations, followed by cell apoptosis, proliferation, migration and invasion were examined by CCK-8, colony formation assay, wound healing, Transwell and flow cytometry, respectively. The mRNA and protein expression of BCL-2, Cleaved-caspase 3, Cleaved-caspase 9, BAK, BAX and BAD were validated by western blot. Results DHM markedly suppressed proliferation, migration, invasion and facilitated apoptosis in Hep3B cells. Mechanistically, DHM significantly downregulated the Bcl-2 expression, and upregulated the mRNA and protein levels of Cleaved-Caspase 3, Cleaved- Caspase 9, Bak, Bax and Bad. Furthermore, in the nude mice tumorigenic model, DHM treatment greatly decreased the weight of the HCC cancers compared to the weights in control and NDP group. Conclusions DHM could suppress cell proliferation, migration, invasion, and facilitated apoptosis in Hep3B cells. These findings could provide novel insights to develop potential therapeutic strategy for the clinical treatment of HCC.


Author(s):  
Yanli Li ◽  
Yang Tian ◽  
Wei Zhong ◽  
Ning Wang ◽  
Yafeng Wang ◽  
...  

The tumor metastasis is the major hurdle for the treatment of advanced hepatocellular carcinoma (HCC), due in part to the lack of effective systemic treatments. DEPDC1, a novel oncoantigen upregulated in HCC, is thought to be a molecular-target for novel therapeutic drugs. Artemisia argyi is a traditional Chinese medicine with anti-inflammatory and anti-tumor activities. This study investigated the potential therapeutic benefits of Artemisia argyi essential oil (AAEO) in suppressing metastasis of HCC by targeting DEPDC1. Assessment of AAEO cytotoxicity was performed by MTT assay. Anti-metastatic effects of AAEO were investigated in vitro using wound healing and transwell assays. The HepG2 cells were transduced with lentiviral vector containing luciferase (Luc). A metastasis model of nude mice was established by tail vein injection of HepG2-Luc cells. The nude mice were treated with AAEO (57.5, 115, and 230 mg/kg) or sorafenib (40 mg/kg). Metastasis of HCC cells was monitored via in vivo bioluminescence imaging. After treatment for 21 days, tissues were collected for histological examination and immunohistochemistry analysis. Gene and protein levels were determined by real-time quantitative PCR and western blotting. The results revealed that AAEO significantly inhibits the migration and invasion in vitro in a concentration-dependent manner. In vivo assays further confirmed that AAEO markedly inhibits HCC metastasis into lung, brain, and femur tissues and exhibits low toxicity. Our results suggested that AAEO significantly downregulates the mRNA and protein expression of DEPDC1. Also, AAEO attenuated Wnt/β-catenin signaling through reduction of Wnt1 and β-catenin production. Moreover, AAEO prevented epithelial-mesenchymal transition (EMT) by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that DEPDC1 promoted HCC migration and invasion via Wnt/β-catenin signaling pathway and EMT. These results demonstrate that AAEO effectively inhibits HCC metastasis via attenuating Wnt/β-catenin signaling and inhibiting EMT by suppressing DEPDC1 expression. Thus, AAEO likely acts as a novel inhibitor of the DEPDC1 dependent Wnt/β-catenin signaling pathway.


2021 ◽  
Author(s):  
Juan Chen ◽  
Fan Li ◽  
Minli Yang ◽  
Yujiao Zhou ◽  
Haijun Deng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally and tumor metastasis is one of the major causes of high mortality. To identify novel molecules contributing to HCC metastasis is critical to understanding the underlining mechanism of cancer metastasis. Here, combining the analyze based on published database and liver tissues from HCC patients, we identified that RNA binding protein L23 (RPL23) as a tumor metastasis driver in HCC. RPL23 was elevated in HCC and closely related to poor clinical outcomes. Furthermore, RPL23 depletion inhibited HCC cell proliferation, migration and invasion, while RPL23 overexpression promoted HCC cell metastasis. Mechanistically, RPL23 positively regulated MMP9 expression by stabilizing its mRNA. And increased MMP9 is involved in RPL23-mediated HCC metastasis. Importantly, RPL23 silencing reduced tumor growth and metastasis in vivo. In summary, we identified that RPL23 play an important role in HCC metastasis in an MMP9-dependent manner and may be a novel potential therapeutic target for HCC tumorigenesis and metastasis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yongzhen Mo ◽  
Yumin Wang ◽  
Shuai Zhang ◽  
Fang Xiong ◽  
Qijia Yan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are widely expressed in human cells and are closely associated with cancer development. However, they have rarely been investigated in the context of nasopharyngeal carcinoma (NPC). Methods We screened a new circRNA, circRNF13, in NPC cells using next-generation sequencing of mRNA. Reverse transcription polymerase chain reaction and RNA fluorescence in situ hybridization were used to detect circRNF13 expression in 12 non-tumor nasopharyngeal epithelial (NPE) tissues and 36 NPC samples. Cell proliferation was detected using MTT and flow cytometry assays, and colony formation capability was detected using colony formation assays. Cell migration and invasion were analyzed using wound-healing and Transwell assays, respectively. Cell glycolysis was analyzed using the Seahorse glycolytic stress test. Glucose transporter type 1 (GLUT1) ubiquitination and SUMOylation modifications were analyzed using co-immunoprecipitation and western blotting. CircRNF13 and Small Ubiquitin-like Modifier 2 (SUMO2) interactions were analyzed using RNA pull-down and luciferase reporter assays. Finally, to test whether circRNF13 inhibited NPC proliferation and metastasis in vivo, we used a xenograft nude mouse model generated by means of subcutaneous or tail vein injection. Results We found that circRNF13 was stably expressed at low levels in NPC clinical tissues and NPC cells. In vitro and in vivo experiments showed that circRNF13 inhibited NPC proliferation and metastasis. Moreover, circRNF13 activated the SUMO2 protein by binding to the 3′- Untranslated Region (3′-UTR) of the SUMO2 gene and prolonging the half-life of SUMO2 mRNA. Upregulation of SUMO2 promotes GLUT1 degradation through SUMOylation and ubiquitination of GLUT1, which regulates the AMPK-mTOR pathway by inhibiting glycolysis, ultimately resulting in the proliferation and metastasis of NPC. Conclusions Our results revealed that a novel circRNF13 plays an important role in the development of NPC through the circRNF13-SUMO2-GLUT1 axis. This study implies that circRNF13 mediates glycolysis in NPC by binding to SUMO2 and provides an important theoretical basis for further elucidating the pathogenesis of NPC and targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document