Low dose imaging with simultaneous scatter, attenuation and mesh-based phase contrast

Author(s):  
Carolyn A. MacDonald ◽  
Rohaan Khan ◽  
Brenda Adhiambo ◽  
Sean Starr-Baier ◽  
Danhong Li ◽  
...  
Keyword(s):  
Low Dose ◽  
2010 ◽  
Vol 110 (10) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kasim Sader ◽  
Andy Brown ◽  
Rik Brydson ◽  
Andrew Bleloch

Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Author(s):  
John P. Langmore ◽  
Brian D. Athey

Although electron diffraction indicates better than 0.3nm preservation of biological structure in vitreous ice, the imaging of molecules in ice is limited by low contrast. Thus, low-dose images of frozen-hydrated molecules have significantly more noise than images of air-dried or negatively-stained molecules. We have addressed the question of the origins of this loss of contrast. One unavoidable effect is the reduction in scattering contrast between a molecule and the background. In effect, the difference in scattering power between a molecule and its background is 2-5 times less in a layer of ice than in vacuum or negative stain. A second, previously unrecognized, effect is the large, incoherent background of inelastic scattering from the ice. This background reduces both scattering and phase contrast by an additional factor of about 3, as shown in this paper. We have used energy filtration on the Zeiss EM902 in order to eliminate this second effect, and also increase scattering contrast in bright-field and dark-field.


Author(s):  
P. Pradère ◽  
J.F. Revol ◽  
R. St. John Manley

Although radiation damage is the limiting factor in HREM of polymers, new techniques based on low dose imaging at low magnification have permitted lattice images to be obtained from very radiation sensitive polymers such as polyethylene (PE). This paper describes the computer averaging of P4MP1 lattice images. P4MP1 is even more sensitive than PE (total end point dose of 27 C m-2 as compared to 100 C m-2 for PE at 120 kV). It does, however, have the advantage of forming flat crystals from dilute solution and no change in d-spacings is observed during irradiation.Crystals of P4MP1 were grown at 60°C in xylene (polymer concentration 0.05%). Electron microscopy was performed with a Philips EM 400 T microscope equipped with a Low Dose Unit and operated at 120 kV. Imaging conditions were the same as already described elsewhere. Enlarged micrographs were digitized and processed with the Spider image processing system.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


Author(s):  
E.T. O’Toole ◽  
G.P. Wray ◽  
J.R. Kremer ◽  
J.R. Mcintosh

Ultrarapid freezing and cryomicroscopy of frozen hydrated material makes it possible to visualize samples that have never been exposed to chemical fixatives, dehydration, or stains. In principle, freezing and cryoimaging methods avoid artifacts associated with chemical fixation and processing and allow one to visualize the specimen in a condition that is close to its native state. Here we describe a way to use a high voltage electron microscope (HVEM) for the cryoimaging of frozen hydrated PTK1 cells.PTK1 cells were cultured on formvar-coated, carbon stabilized gold grids. After three days in culture, the grids were removed from the culture medium and blotted in a humidity chamber at 35° C. In some instances, the grids were rinsed briefly in 0.16 M ammonium acetate buffer (pH 7.2) prior to blotting. After blotting, the grids were transferred to a plunging apparatus and plunged into liquid ethane held directly above its freezing point. The plunging apparatus consists of a vertical slide rail that guides the fall of a mounted pair of forceps that clamp the specimen. The forceps are surrounded by a plexiglass humidity chamber mounted over a dewar of liquid nitrogen containing an ethane chamber. After freezing, the samples were transferred to liquid nitrogen and viewed in a JEOL JEM 1000 equipped with a top entry cold stage designed and built by Mr. George Wray (Univ. Colorado). The samples were routinely exposed to electron doses of 1 e/Å2/sec, and viewed at a temperature of −150° C. A GATAN video system was used to enhance contrast and to estimate the correct amount of underfocus needed to obtain phase contrast at various magnifications. Low dose micrographs were taken using two second exposures of Kodak 4463 film. The state of the solid water in the specimen was determined by diffraction using a 30/μm field limiting aperture and a camera length of 1 meter.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

2016 ◽  
Vol 24 (4) ◽  
pp. 4331 ◽  
Author(s):  
Ralf Hofmann ◽  
Alexander Schober ◽  
Steffen Hahn ◽  
Julian Moosmann ◽  
Jubin Kashef ◽  
...  

2013 ◽  
Vol 40 (9) ◽  
pp. 090701 ◽  
Author(s):  
A. Olivo ◽  
S. Gkoumas ◽  
M. Endrizzi ◽  
C. K. Hagen ◽  
M. B. Szafraniec ◽  
...  
Keyword(s):  
Low Dose ◽  

Sign in / Sign up

Export Citation Format

Share Document