Research on high sensitivity test technology of single photon remote detection system

Author(s):  
Jie Fu ◽  
Guofeng Zheng ◽  
Baolin Du ◽  
Shiyong Guo ◽  
Peng Zhang
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Robert E Stroud ◽  
Christine N Koval ◽  
Isabelle Gengler ◽  
Anne M Deschamps ◽  
John S Ikonomidis ◽  
...  

Background. Cytokines, such as the interleukins (IL1β, IL2, IL6) and tumor necrosis factor (TNF) can modulate myocardial structure and function with ischemia/reperfusion (I/R) but dynamic assessment of these biological molecules within the human myocardial interstitium with I/R has not been performed, and the inter-relationship to matrix metalloproteinases activity (MMPact) remains unexplored. Accordingly, a fluorogenic microdialysis method was used to simultaneously measure myocardial interstitial cytokine levels and MMPact in patients during and following I/R. Methods . MMPact was measured in patients (n=13) undergoing cardio-pulmonary bypass (CPB) at baseline, during myocardial arrest and CPB (on-CPB), and immediately following reperfusion and separation from CPB (post-CPB) by a validated in-line microdialysis fluorescent detection system. Myocardial interstitial fluid was subjected to cytokine analysis by high sensitivity multiplex suspension array. Results . Interstitial MMPact increased by over 30% post-CPB and was accompanied by a specific change in cytokine profiles (Figure ). The classical pro-inflammatory molecules such as TNF and IL6 were either not detectable or unchanged, whereas IL1β and IL2 which can be proinflammatory, were increased. Conclusions. These unique results demonstrated that a dynamic cytokine signature occurs within the human myocardial interstitium following I/R and is temporally related to heightened MMP activity. Direct interrogation of the human myocardial interstitium may provide a unique insight into critical signaling pathways which may evoke adverse structural and functional events following I/R.


2009 ◽  
Author(s):  
Daniel Keith Marble ◽  
Ben Urban ◽  
Jose Pacheco ◽  
Floyd D. McDaniel ◽  
Barney L. Doyle

Author(s):  
Mochamad Zaeynuri Setiawan ◽  
Fachrudin Hunaini ◽  
Mohamad Mukhsim

The phenomenon that often arises in a substation is the problem of partial discharge in outgoing cable insulation. Partial discharge is a jump of positive and negative ions that are not supposed to meet so that it can cause a spark jump. If a partial discharge is left too long it can cause insulation failure, the sound of snakes like hissing and the most can cause a flashover on the outgoing cable. Then a partial discharge detection prototype was made in the cable insulation in order to anticipate the isolation interference in the outgoing cable. Can simplify the work of substation operators to check the reliability of insulation on the outgoing side of each cubicle. So it was compiled as a method for measuring sound waves caused by partial discharge in the process of measuring using a microphone sensor, the Arduino Mega 2560 module as a microcontroller, the LCD TFT as a monitoring and the MicroSD card module as its storage. The microphone sensor is a sensor that has a high sensitivity to sound, has 2 analog and digital readings, and is easily designed with a microcontroller. Basically the unit of measure measured at partial discharge is Decibels. The results of the prototype can be applied to the cubicle and the way it works is to match the prototype to the outgoing cubicle cable then measure from the cable boots connector to the bottom of the outgoing cable with a distance of 1 meter. Then the measurement results will be monitored on the TFT LCD screen in the form of measurement results, graphs and categories on partial discharge. In this design the measurement data made by the microphone can be stored with microSD so that it can make an evaluation of partial discharge handling in outgoing cable insulation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243319
Author(s):  
Takeshi Hanami ◽  
Tetsuya Tanabe ◽  
Takuya Hanashi ◽  
Mitsushiro Yamaguchi ◽  
Hidetaka Nakata ◽  
...  

Here, we report a rapid and ultra-sensitive detection technique for fluorescent molecules called scanning single molecular counting (SSMC). The method uses a fluorescence-based digital measurement system to count single molecules in a solution. In this technique, noise is reduced by conforming the signal shape to the intensity distribution of the excitation light via a circular scan of the confocal region. This simple technique allows the fluorescent molecules to freely diffuse into the solution through the confocal region and be counted one by one and does not require statistical analysis. Using this technique, 28 to 62 aM fluorescent dye was detected through measurement for 600 s. Furthermore, we achieved a good signal-to-noise ratio (S/N = 2326) under the condition of 100 pM target nucleic acid by only mixing a hybridization-sensitive fluorescent probe, called Eprobe, into the target oligonucleotide solution. Combination of SSMC and Eprobe provides a simple, rapid, amplification-free, and high-sensitive target nucleic acid detection system. This method is promising for future applications to detect particularly difficult to design primers for amplification as miRNAs and other short oligo nucleotide biomarkers by only hybridization with high sensitivity.


2002 ◽  
Vol 22 (9) ◽  
pp. 1035-1041 ◽  
Author(s):  
Brian J. Bacskai ◽  
William E. Klunk ◽  
Chester A. Mathis ◽  
Bradley T. Hyman

Alzheimer disease (AD) is an illness that can only be diagnosed with certainty with postmortem examination of brain tissue. Tissue samples from afflicted patients show neuronal loss, neurofibrillary tangles (NFTs), and amyloid-β plaques. An imaging technique that permitted in vivo detection of NFTs or amyloid-β plaques would be extremely valuable. For example, chronic imaging of senile plaques would provide a readout of the efficacy of experimental therapeutics aimed at removing these neuropathologic lesions. This review discusses the available techniques for imaging amyloid-β deposits in the intact brain, including magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, and multiphoton microscopy. A variety of agents that target amyloid-β deposits specifically have been developed using one or several of these imaging modalities. The difficulty in developing these tools lies in the need for the agents to cross the blood-brain barrier while recognizing amyloid-β with high sensitivity and specificity. This review describes the progress in developing reagents suitable for in vivo imaging of senile plaques.


2021 ◽  
Vol 34 (4) ◽  
pp. 044003
Author(s):  
Fumihiro China ◽  
Naoki Takeuchi ◽  
Shigehito Miki ◽  
Masahiro Yabuno ◽  
Shigeyuki Miyajima ◽  
...  

2020 ◽  
Author(s):  
Young Chul Youn ◽  
Byoung Sub Lee ◽  
Gwang Je Kim ◽  
Ji Sun Ryu ◽  
Kuntaek Lim ◽  
...  

Abstract INTRODUCTION: Oligomeric amyloid ß (Aß) is one of the major contributors to the pathomechanism of AD; Aß oligomerization in plasma can be measured using a Multimer Detection System-Oligomeric Aß (MDS-OAß) after incubation with spiked synthetic Aß. METHODS: We evaluated the clinical sensitivity and specificity of the MDS-OAß values by inBlood TM OAß test using heparin-treated plasma samples from 52 AD patients in comparison with 52 community-based subjects with normal cognition (NC). The inclusion criterion was proposed by the NINCDS-ADRDA and additionally required for the least 6 months of follow-up from the initial clinical diagnosis in the course of AD. RESULTS: The MDS-OAβ values were 1.43 ± 0.30 ng/ml in AD and 0.45 ± 0.19 ( p <0.001) in NC, respectively. Using a cut-off value of 0.78 ng/ml, the results revealed that 100% sensitivity 92.31% specificity. DISCUSSION: MDS-OAß to measure plasma Aβ oligomerization is a valuable blood-based biomarker for clinical diagnosis of AD, with high sensitivity and specificity.


2012 ◽  
Vol 20 (1) ◽  
pp. 9-16
Author(s):  
陈霄 CHEN Xiao ◽  
隋青美 SUI Qing-mei ◽  
苗飞 MIAO Fei ◽  
贾磊 JIA Lei ◽  
曹玉强 CAO Yu-qiang

2012 ◽  
Vol 108 (10) ◽  
pp. 2641-2652 ◽  
Author(s):  
K. Heimonen ◽  
E.-V. Immonen ◽  
R. V. Frolov ◽  
I. Salmela ◽  
M. Juusola ◽  
...  

In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach ( Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ∼20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ∼5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ∼100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.


Sign in / Sign up

Export Citation Format

Share Document