Abstract 4336: Interrogating the Human Myocardial Interstitium during Myocardial Arrest and Reperfusion: Dynamic Changes in Cytokines and Protease Activity

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Robert E Stroud ◽  
Christine N Koval ◽  
Isabelle Gengler ◽  
Anne M Deschamps ◽  
John S Ikonomidis ◽  
...  

Background. Cytokines, such as the interleukins (IL1β, IL2, IL6) and tumor necrosis factor (TNF) can modulate myocardial structure and function with ischemia/reperfusion (I/R) but dynamic assessment of these biological molecules within the human myocardial interstitium with I/R has not been performed, and the inter-relationship to matrix metalloproteinases activity (MMPact) remains unexplored. Accordingly, a fluorogenic microdialysis method was used to simultaneously measure myocardial interstitial cytokine levels and MMPact in patients during and following I/R. Methods . MMPact was measured in patients (n=13) undergoing cardio-pulmonary bypass (CPB) at baseline, during myocardial arrest and CPB (on-CPB), and immediately following reperfusion and separation from CPB (post-CPB) by a validated in-line microdialysis fluorescent detection system. Myocardial interstitial fluid was subjected to cytokine analysis by high sensitivity multiplex suspension array. Results . Interstitial MMPact increased by over 30% post-CPB and was accompanied by a specific change in cytokine profiles (Figure ). The classical pro-inflammatory molecules such as TNF and IL6 were either not detectable or unchanged, whereas IL1β and IL2 which can be proinflammatory, were increased. Conclusions. These unique results demonstrated that a dynamic cytokine signature occurs within the human myocardial interstitium following I/R and is temporally related to heightened MMP activity. Direct interrogation of the human myocardial interstitium may provide a unique insight into critical signaling pathways which may evoke adverse structural and functional events following I/R.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao-Bing Fu

AbstractWound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly; however, the basic process of repair at the cell level is often neglected. Because the cell is the basic unit of organism structure and function; cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury. Then, damage to tissues and organs occurs with massive cell damage, apoptosis and even cell death. Thus, how to achieve the aim of perfect repair and regeneration? The basic process of tissue or organ repair and regeneration should involve repair of cells first, then tissues and organs. In this manuscript, it is my consideration about how to repair the cell first, then regenerate the tissues and organs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1207
Author(s):  
Hong Jae Cheon ◽  
Quynh Huong Nguyen ◽  
Moon Il Kim

Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.


2021 ◽  
Vol 50 (38) ◽  
pp. 13528-13532
Author(s):  
Yanan Ma ◽  
Xiaoping Yang ◽  
Wenxin Hao ◽  
Ting Zhu ◽  
Chengri Wang ◽  
...  

An 18-metal Yb(iii) nanoring that shows a ratiometric fluorescent response to 2,6-dipicolinic acid with high sensitivity and selectivity was synthesized from two types of polydentate organic ligands.


2009 ◽  
Author(s):  
Daniel Keith Marble ◽  
Ben Urban ◽  
Jose Pacheco ◽  
Floyd D. McDaniel ◽  
Barney L. Doyle

NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950084 ◽  
Author(s):  
Jilong Wang ◽  
Siheng Su ◽  
Jingjing Qiu ◽  
Shiren Wang

In this paper, a novel and facile method to achieve fluorescent nanosized-diamond based nanowire (NW) is reported. One-dimensional (1D) organic NW has received tremendous attention due to its superior chemical functionality and size-, shape-, and material-dependent properties. In addition, nanosized-diamond is comprehensively studied and investigated due to superior tunable fluorescent properties, cost-effectiveness, facile manufacturing and high biocompatibility. Through thermal treatment, sulfur-modified nanosized-diamond was fabricated by mixing oxidized nanosized-diamond and dibenzyl disulfide at 900∘C. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and zeta potential were employed to characterize sulfur-modified nanosized-diamond. After that, porous anodic aluminum oxide template-assisted cathodic electrophoretic deposition method was used to achieve sulfur-modified nanosized-diamond NW. Scanning electron microscopy and transmission electron microscopy were applied to present the one-dimensional structure of the NWs. The optical properties of sulfur nanosized-diamond NW were characterized via ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Finally, the as-synthesized sulfur-modified nanosized-diamond NW-based optical sensor was fabricated to detect vitamin B[Formula: see text] with high sensitivity and selectivity.


2017 ◽  
Author(s):  
Yuming Dong ◽  
Yizhou Zhang ◽  
Liang Zhang ◽  
Peng Liu ◽  
Liangpei Chen

Author(s):  
Mochamad Zaeynuri Setiawan ◽  
Fachrudin Hunaini ◽  
Mohamad Mukhsim

The phenomenon that often arises in a substation is the problem of partial discharge in outgoing cable insulation. Partial discharge is a jump of positive and negative ions that are not supposed to meet so that it can cause a spark jump. If a partial discharge is left too long it can cause insulation failure, the sound of snakes like hissing and the most can cause a flashover on the outgoing cable. Then a partial discharge detection prototype was made in the cable insulation in order to anticipate the isolation interference in the outgoing cable. Can simplify the work of substation operators to check the reliability of insulation on the outgoing side of each cubicle. So it was compiled as a method for measuring sound waves caused by partial discharge in the process of measuring using a microphone sensor, the Arduino Mega 2560 module as a microcontroller, the LCD TFT as a monitoring and the MicroSD card module as its storage. The microphone sensor is a sensor that has a high sensitivity to sound, has 2 analog and digital readings, and is easily designed with a microcontroller. Basically the unit of measure measured at partial discharge is Decibels. The results of the prototype can be applied to the cubicle and the way it works is to match the prototype to the outgoing cubicle cable then measure from the cable boots connector to the bottom of the outgoing cable with a distance of 1 meter. Then the measurement results will be monitored on the TFT LCD screen in the form of measurement results, graphs and categories on partial discharge. In this design the measurement data made by the microphone can be stored with microSD so that it can make an evaluation of partial discharge handling in outgoing cable insulation.


Sign in / Sign up

Export Citation Format

Share Document