Real-time monitoring of charge carrier traps leads to stable and high-performance organic field-effect transistors

Author(s):  
Hamna Haneef ◽  
Qianxiang Ai ◽  
Chad Risko ◽  
John E. Anthony ◽  
Oana Jurchescu
2017 ◽  
Vol 53 (83) ◽  
pp. 11407-11409 ◽  
Author(s):  
Beibei Fu ◽  
Xueqing Hou ◽  
Cong Wang ◽  
Yu Wang ◽  
Xiaotao Zhang ◽  
...  

The charge carrier mobility of a sumanene derivative was probed using single-crystal field-effect transistors for the first time.


2016 ◽  
Vol 4 (40) ◽  
pp. 9554-9560 ◽  
Author(s):  
Gyoungsik Kim ◽  
Hyoeun Kim ◽  
Moonjeong Jang ◽  
Yun Kyung Jung ◽  
Joon Hak Oh ◽  
...  

A systematic study on the microstructure-property relationship in thienoisoindigo (TIIG)-based polymers provides the guidance for the synthesis of high-performance polymers by tuning the polarity of charge carrier in organic field-effect transistors (OFETs).


2017 ◽  
Vol 53 (43) ◽  
pp. 5898-5901 ◽  
Author(s):  
Sureshraju Vegiraju ◽  
Deng-Yi Huang ◽  
Pragya Priyanka ◽  
Yo-Shan Li ◽  
Xian-Lun Luo ◽  
...  

DDTT-TTARexhibits the highest mobility of 0.81 cm2V−1s−1.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bishwajeet Singh Bhardwaj ◽  
Takeshi Sugiyama ◽  
Naoko Namba ◽  
Takayuki Umakoshi ◽  
Takafumi Uemura ◽  
...  

Abstract Pentacene, an organic molecule, is a promising material for high-performance field effect transistors due to its high charge carrier mobility in comparison to usual semiconductors. However, the charge carrier mobility is strongly dependent on the molecular orientation of pentacene in the active layer of the device, which is hard to investigate using standard techniques in a real device. Raman scattering, on the other hand, is a high-resolution technique that is sensitive to the molecular orientation. In this work, we investigated the orientation distribution of pentacene molecules in actual transistor devices by polarization-dependent Raman spectroscopy and correlated these results with the performance of the device. This study can be utilized to understand the distribution of molecular orientation of pentacene in various electronic devices and thus would help in further improving their performances.


Sign in / Sign up

Export Citation Format

Share Document