Machine learning in reflectance confocal imaging for aiding cancer diagnosis: opportunities and challenges

Author(s):  
Jennifer G. Dy
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Javed Iqbal ◽  
Zeeshan Javed ◽  
Haleema Sadia ◽  
Ijaz A. Qureshi ◽  
Asma Irshad ◽  
...  

AbstractArtificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ben R. Cairns ◽  
Benjamin Jevans ◽  
Atchariya Chanpong ◽  
Dale Moulding ◽  
Conor J. McCann

AbstractNeuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1−/− colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1−/− ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.


2020 ◽  
Vol 17 (12) ◽  
pp. 5438-5446
Author(s):  
C. Suguna ◽  
S. P. Balamurugan

Cervical cancer is a commonly occurring deadliest disease among women, which needs earlier diagnosis to reduce the prevalence. Pap-smear is considered as a widely employed technique to screen and diagnose cervical cancer. Since classical manual screening techniques are inefficient in the identification of cervical cancer, several research works have been started to develop automated machine learning (ML) and deep learning (DL) tools for cervical cancer diagnosis. This paper surveys the recent works made on cervical cancer diagnosis and classification. The recently presently ML and DL models for cervical cancer diagnosis and classification has been reviewed in detail. Besides, segmentation techniques developed for cervical cancer diagnosis also surveyed. At the end of the survey, a brief comparative study has been carried out to identify the significance of the reviewed methods.


Author(s):  
Yi‐Cheng Zhu ◽  
Hongbo Du ◽  
Quan Jiang ◽  
Tao Zhang ◽  
Xu‐Juan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document