scholarly journals Thermal imaging in the 3-5 micron range for precise localization of defects: application on frescoes at the Sforza Castle

Author(s):  
Claudia Daffara ◽  
Simone Parisotto ◽  
Sara Mazzocato ◽  
Paola Ilaria Mariotti ◽  
Dario Ambrosini
2009 ◽  
Vol 5 (1) ◽  
pp. 31-35
Author(s):  
F.F. Sizov ◽  
◽  
V.V. Zabudsky ◽  
A.G. Golenkov ◽  
S.L. Kravchenko ◽  
...  

2013 ◽  
Vol 133 (7) ◽  
pp. 274-279
Author(s):  
Tomoyuki Takahata ◽  
Kiyoshi Matsumoto ◽  
Isao Shimoyama

Science Scope ◽  
2016 ◽  
Vol 039 (07) ◽  
Author(s):  
Jeffrey Nordine ◽  
Susanne Wessnigk

2017 ◽  
Vol 16 (6) ◽  
pp. 1389-1393 ◽  
Author(s):  
Cristian Tomescu ◽  
Maria Prodan ◽  
Niculina Vatavu ◽  
Emeric Chiuzan

Author(s):  
Nova T. Zamora ◽  
Kam Meng Chong ◽  
Ashish Gupta

Abstract This paper presented the recent application of die powerup in Thermal Imaging as applied to the detection of defects causing thermal failure on revenue products or units not being captured using other available techniques. Simulating the condition on an actual computer setup, the infrared (IR) camera should capture images simultaneously as the entire bootup process is being executed by the processor, thus revealing a series of images and thermal information on each and every step of the startup process. This metrology gives the failure analyst a better approach to acquire a set of information that substantiate in the conduct of rootcause analysis of thermal-related failure in revenue units, especially on customer returns. Defective units were intentionally engineered in order to collect the thermal response data and eventually come up with a plot of all known thermal-related defects.


Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


Sign in / Sign up

Export Citation Format

Share Document