Deep-learning-enhanced lightfield microscopy for capturing instantaneous biological dynamics at high spatiotemporal resolution

2021 ◽  
Author(s):  
Lanxin Zhu ◽  
Chengqiang Yi ◽  
Peng Fei
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xiaopeng Chen ◽  
Junyu Ping ◽  
Yixuan Sun ◽  
Chengqiang Yi ◽  
Sijian Liu ◽  
...  

Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here...


2020 ◽  
Vol 12 (2) ◽  
pp. 264 ◽  
Author(s):  
Lianfa Li

Accurate estimation of fine particulate matter with diameter ≤2.5 μm (PM2.5) at a high spatiotemporal resolution is crucial for the evaluation of its health effects. Previous studies face multiple challenges including limited ground measurements and availability of spatiotemporal covariates. Although the multiangle implementation of atmospheric correction (MAIAC) retrieves satellite aerosol optical depth (AOD) at a high spatiotemporal resolution, massive non-random missingness considerably limits its application in PM2.5 estimation. Here, a deep learning approach, i.e., bootstrap aggregating (bagging) of autoencoder-based residual deep networks, was developed to make robust imputation of MAIAC AOD and further estimate PM2.5 at a high spatial (1 km) and temporal (daily) resolution. The base model consisted of autoencoder-based residual networks where residual connections were introduced to improve learning performance. Bagging of residual networks was used to generate ensemble predictions for better accuracy and uncertainty estimates. As a case study, the proposed approach was applied to impute daily satellite AOD and subsequently estimate daily PM2.5 in the Jing-Jin-Ji metropolitan region of China in 2015. The presented approach achieved competitive performance in AOD imputation (mean test R2: 0.96; mean test RMSE: 0.06) and PM2.5 estimation (test R2: 0.90; test RMSE: 22.3 μg/m3). In the additional independent tests using ground AERONET AOD and PM2.5 measurements at the monitoring station of the U.S. Embassy in Beijing, this approach achieved high R2 (0.82–0.97). Compared with the state-of-the-art machine learning method, XGBoost, the proposed approach generated more reasonable spatial variation for predicted PM2.5 surfaces. Publically available covariates used included meteorology, MERRA2 PBLH and AOD, coordinates, and elevation. Other covariates such as cloud fractions or land-use were not used due to unavailability. The results of validation and independent testing demonstrate the usefulness of the proposed approach in exposure assessment of PM2.5 using satellite AOD having massive missing values.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Nicholas F. McCarthy ◽  
Ali Tohidi ◽  
Yawar Aziz ◽  
Matt Dennie ◽  
Mario Miguel Valero ◽  
...  

Scarcity in wildland fire progression data as well as considerable uncertainties in forecasts demand improved methods to monitor fire spread in real time. However, there exists at present no scalable solution to acquire consistent information about active forest fires that is both spatially and temporally explicit. To overcome this limitation, we propose a statistical downscaling scheme based on deep learning that leverages multi-source Remote Sensing (RS) data. Our system relies on a U-Net Convolutional Neural Network (CNN) to downscale Geostationary (GEO) satellite multispectral imagery and continuously monitor active fire progression with a spatial resolution similar to Low Earth Orbit (LEO) sensors. In order to achieve this, the model trains on LEO RS products, land use information, vegetation properties, and terrain data. The practical implementation has been optimized to use cloud compute clusters, software containers and multi-step parallel pipelines in order to facilitate real time operational deployment. The performance of the model was validated in five wildfires selected from among the most destructive that occurred in California in 2017 and 2018. These results demonstrate the effectiveness of the proposed methodology in monitoring fire progression with high spatiotemporal resolution, which can be instrumental for decision support during the first hours of wildfires that may quickly become large and dangerous. Additionally, the proposed methodology can be leveraged to collect detailed quantitative data about real-scale wildfire behaviour, thus supporting the development and validation of fire spread models.


2015 ◽  
Vol 149 ◽  
pp. 86-94 ◽  
Author(s):  
Dimitar R Stamov ◽  
Erik Stock ◽  
Clemens M Franz ◽  
Torsten Jähnke ◽  
Heiko Haschke

Sign in / Sign up

Export Citation Format

Share Document