Features of the scattering of polarized light by biological materials of fish

2021 ◽  
Author(s):  
Alexandr D. Arkhelyuk ◽  
Leonid Pidkamin ◽  
Oleksii Khudyi ◽  
Mykhailo Marchenko ◽  
Lidiia Khuda ◽  
...  
Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Author(s):  
Rudolf Oldenbourg

The recent renaissance of the light microsope is fueled in part by technological advances in components on the periphery of the microscope, such as the laser as illumination source, electronic image recording (video), computer assisted image analysis and the biochemistry of fluorescent dyes for labeling specimens. After great progress in these peripheral parts, it seems timely to examine the optics itself and ask how progress in the periphery facilitates the use of new optical components and of new optical designs inside the microscope. Some results of this fruitful reflection are presented in this symposium.We have considered the polarized light microscope, and developed a design that replaces the traditional compensator, typically a birefringent crystal plate, with a precision universal compensator made of two liquid crystal variable retarders. A video camera and digital image processing system provide fast measurements of specimen anisotropy (retardance magnitude and azimuth) at ALL POINTS of the image forming the field of view. The images document fine structural and molecular organization within a thin optical section of the specimen.


Author(s):  
W. E. Rigsby ◽  
D. M. Hinton ◽  
V. J. Hurst ◽  
P. C. McCaskey

Crystalline intracellular inclusions are rarely seen in mammalian tissues and are often difficult to positively identify. Lymph node and liver tissue samples were obtained from two cows which had been rejected at the slaughter house due to the abnormal appearance of these organs in the animals. The samples were fixed in formaldehyde and some of the fixed material was embedded in paraffin. Examination of the paraffin sections with polarized light microscopy revealed the presence of numerous crystals in both hepatic and lymph tissue sections. Tissue sections were then deparaffinized in xylene, mounted, carbon coated, and examined in a Phillips 505T SEM equipped with a Tracor Northern X-ray Energy Dispersive Spectroscopy (EDS) system. Crystals were obscured by cellular components and membranes so that EDS spectra were only obtainable from whole cells. Tissue samples which had been fixed but not paraffin-embedded were dehydrated, embedded in Spurrs plastic, and sectioned.


Author(s):  
R. L. Grayson ◽  
N. A. Rechcigl

Ruthenium red (RR), an inorganic dye was found to be useful in electron microscopy where it can combine with osmium tetroxide (OsO4) to form a complex with attraction toward anionic substances. Although Martinez-Palomo et al. (1969) were one of the first investigators to use RR together with OsO4, our computor search has shown few applications of this combination in the intervening years. The purpose of this paper is to report the results of our investigations utilizing the RR/OsO4 combination to add electron density to various biological materials. The possible mechanisms by which this may come about has been well reviewed by previous investigators (1,3a,3b,4).


Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


Sign in / Sign up

Export Citation Format

Share Document