Research on fire resistance performance of substation building wall

2021 ◽  
Author(s):  
Kai Xue ◽  
Qian Li ◽  
Chunguang Ren ◽  
Xiaoyang Dong ◽  
Dongxun Wu ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1701
Author(s):  
R. A. Ilyas ◽  
S. M. Sapuan ◽  
M. R. M. Asyraf ◽  
D. A. Z. N. Dayana ◽  
J. J. N. Amelia ◽  
...  

Polymer composites filled with metal derivatives have been widely used in recent years, particularly as flame retardants, due to their superior characteristics, including high thermal behavior, low environmental degradation, and good fire resistance. The hybridization of metal and polymer composites produces various favorable properties, making them ideal materials for various advanced applications. The fire resistance performance of polymer composites can be enhanced by increasing the combustion capability of composite materials through the inclusion of metallic fireproof materials to protect the composites. The final properties of the metal-filled thermoplastic composites depend on several factors, including pore shape and distribution and morphology of metal particles. For example, fire safety equipment uses polyester thermoplastic and antimony sources with halogenated additives. The use of metals as additives in composites has captured the attention of researchers worldwide due to safety concern in consideration of people’s life and public properties. This review establishes the state-of-art flame resistance properties of metals/polymer composites for numerous industrial applications.


2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2013 ◽  
Vol 405-408 ◽  
pp. 2305-2310
Author(s):  
Ling Feng Gong ◽  
Yin Bai ◽  
Jian Lei Zhai

With fire temperature rising, elastic modulus of steel would be reduce, which then would lead to global instability phenomenon of double-layer square pyramid silo-shell structure. In order to analyze its fire resistance performance under high fire temperature, different geometric parameters were set based on the effect factors when it operated normally at room temperature. To analyze its displacement change by conducting nonlinear finite element analysis which was under the two typical temperature rising cases including global non-uniform temperature and localized high temperature. Then, with the temperature rising, the fire resistance performance and the maxium displacement changing rule were obtained.


2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.


2014 ◽  
Vol 15 (4) ◽  
pp. 543-555 ◽  
Author(s):  
Deok Hee Won ◽  
Woo Sun Park ◽  
In-Sung Jang ◽  
Sang-Hun Han ◽  
Taek Hee Han

Sign in / Sign up

Export Citation Format

Share Document