Effect of operating parameters on flow field and classification performance of double vortex finder hydrocyclones

2021 ◽  
Author(s):  
Jiangbo Ge ◽  
Yuekan Zhang ◽  
Peikun Liu ◽  
Lanyue Jiang ◽  
Xinghua Yang ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jin Jiang ◽  
Rui Ying ◽  
Jingan Feng ◽  
Weibing Wang

Compound hydrocyclone is a kind of dynamic hydrocyclone also with the advantages of static hydrocyclone. In this investigation, the effect of operating parameters on separation performance of compound hydrocyclone is studied using both CFD technique and experimental method. The flow field of compound hydrocyclone was simulated by the RSM turbulence model; the particles with different size were simplified to 6 phases and simulated by the mixture multiphase model. The central composite design method was used to conduct the separation experiment of compound hydrocyclone. The results indicated that compound hydrocyclone can be used for finer particles separation and the flow field of compound hydrocyclone can still achieve a higher centrifugal force in lower inlet velocity. When the minimum partition size is required, the optimized operating condition of the compound hydrocyclone is v = 2.5 m/s, n = 1865 rpm, and c = 7.5%, while when the maximum partition size is required, the optimized operating condition is v = 2.5 m/s, n = 905 rpm, and c = 24.5%.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chang Liu ◽  
Zuobing Chen ◽  
Weili Zhang ◽  
Chenggang Yang ◽  
Ya Mao ◽  
...  

The vertical roller mill is an important crushing and grading screening device widely used in many industries. Its classification efficiency and the pressure difference determine the entire producing capacity and power consumption, respectively, which makes them the two key indicators describing the mill performance. Based on the DPM (Discrete Phase Model) and continuous phase coupling model, the flow field characteristics in the vertical roller mill including the velocity and pressure fields and the discrete phase distributions had been analyzed. The influence of blade parameters like the shape, number, and rotating speed on the flow field and classification performance had also been comprehensively explored. The numerical simulations showed that there are vortices in many zones in the mill and the blades are of great significance to the mill performance. The blade IV not only results in high classification efficiency but also reduces effectively the pressure difference in the separator and also the whole machine. The conclusions of the flow field analysis and the blade effects on the classification efficiency and the pressure difference could guide designing and optimizing the equipment structure and the milling process, which is of great importance to obtain better overall performance of the vertical roller mill.


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


2021 ◽  
Vol 11 (5) ◽  
pp. 180-187
Author(s):  
Blanka Orosz ◽  
Máté Petrik ◽  
L. Gábor Szepesi

The engineering practice in general requires the ability to recognize the possible hazards associated with the coordinated production process. Solid particles found in the air can potentially be one of these, therefore it is fundamental to deal with the risk posed by certain types of dusts. An industrial cyclone is an equipment which is designed to separate the hazardous material from the harmless matter within the air. First and foremost the efficiency of a cyclone is determined substantially by the operating parameters. Certain geometries of the device however, such as the vortex finder can also have a significant role. The experiment conducted revolves around a CFD simulation to determine the efficiency of the apparatus based on different geometries in general and also regarding the vortex finder. The results indicate that the length of the vortex detector has a more significant effect, than the overall geometry.


2004 ◽  
Vol 126 (1) ◽  
pp. 156-161 ◽  
Author(s):  
Richard F. Salant ◽  
Ann H. Rocke

The flow field in the lubricating film of a rotary lip seal is analyzed numerically by solving the Reynolds equation with flow factors. The behavior of such a flow field is dominated by the asperities on the lip surface. Since previous analyses treated those asperities deterministically, they required very large computation times. The present approach is much less computationally intensive because the asperities are treated statistically. Since cavitation and asperity orientation play important roles, these are taken into account in the computation of the flow factors. Results of the analysis show how the operating parameters of the seal and the characteristics of the asperities affect such seal characteristics as the pressure distribution in the film, the pumping rate and the load support.


Author(s):  
Bin Xiong ◽  
Xiaofeng Lu ◽  
R. S. Amano

This paper presents a numerical study of gas flow in a square cyclone separator with a double inlet. The turbulence of gas flow is computed by the use of the Reynolds stress model. The distribution of the flow field and pressure drop under different constructional details, which include changes of the shape, size and arrangement of the vortex finder are obtained. The computed results in the distributions of pressure in different sections are verified by comparison with those measured. We found that the center of the flow field is nearly on the geometric center of the cyclone. The flow fields show a feature of Rankine eddy, i.e., a strongly swirling region in the central part and a pseudo-free eddy region of weak swirling intensity near the cyclone wall. Local vortex exists at the corners where the flow changes their direction sharply, but it is less chaotic than in the general square cyclone with a single inlet. The flow field away from the outlet of the vortex finder is different from the Rankine eddy. The pressure-drop increases rapidly with the increase of the inlet velocity, and the pressure-drop increases with the decrease of the diameter of vortex finder and the increase of length of the vortex finder. The calculat ed results of this paper provide some guidance for the optimization of the square cyclone separator structure.


Sign in / Sign up

Export Citation Format

Share Document