New technique for reconstruction of a complex wave field by means of measurement of three-dimensional intensity

Author(s):  
Jinhong Tu ◽  
Shinichi Tamura
2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


2000 ◽  
Vol 6 (3) ◽  
pp. 82-85 ◽  
Author(s):  
J.A. van Kan ◽  
T. Osipowicz ◽  
F. Watt ◽  
J. L. Sanchez

2020 ◽  
Author(s):  
Peyman Bakhshayesh ◽  
Ugwunna Ihediwa ◽  
Sukha Sandher ◽  
Alexandros Vris ◽  
Nima Heidari ◽  
...  

Abstract Introduction: Rotational deformities following IM nailing of tibia has a reported incidence of as high as 20%. Common techniques to measure deformities following IM nailing of tibia are either based on clinical assessment, plain X-rays or CT-scan comparing the treated leg with the uninjured contralateral side. All these techniques are based on examiners manual calculation inherently subject to bias. Following our previous rigorous motion analysis and symmetry studies on hemi pelvises, femurs and orthopaedic implants, we aimed to introduce a novel fully digital technique to measure rotational deformities in the lower legs.Material and Methods: Following formal institutional approval from the Imperial College, CT images of 10 pairs of human lower legs were retrieved. Images were anonymized and uploaded to a research server. Three dimensional CT images of the lower legs were bilaterally reconstructed. The mirrored images of the left side were merged with the right side proximally as stationary and distally as moving objects. Discrepancies in translation and rotation were automatically calculated.Results: Our study population had a mean age of 54 ± 20 years. There were six males and four females. We observed a greater variation in translation (mm) of Centre of Mass (COM) in sagittal plane (CI: -2.959--.292) which was also presented as rotational difference alongside the antero-posterior direction or Y axis (CI: .370-1.035). In other word the right lower legs in our study were more likely to be in varus compared to the left side. However, there were no statistically significant differences in coronal or axial planes.Conclusion: Using our proposed fully digital technique we found that lower legs of the human adults were symmetrical in axial and coronal plane. We found sagittal plane differences which need further addressing in future using bigger sample size. Our novel recommended technique is fully digital and commercially available. This new technique can be useful in clinical practice addressing rotational deformities following orthopaedic surgical intervention. This new technique can substitute the previously introduced techniques.


Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1166-1182 ◽  
Author(s):  
Irshad R. Mufti

Finite‐difference seismic models are commonly set up in 2-D space. Such models must be excited by a line source which leads to different amplitudes than those in the real data commonly generated from a point source. Moreover, there is no provision for any out‐of‐plane events. These problems can be eliminated by using 3-D finite‐difference models. The fundamental strategy in designing efficient 3-D models is to minimize computational work without sacrificing accuracy. This was accomplished by using a (4,2) differencing operator which ensures the accuracy of much larger operators but requires many fewer numerical operations as well as significantly reduced manipulation of data in the computer memory. Such a choice also simplifies the problem of evaluating the wave field near the subsurface boundaries of the model where large operators cannot be used. We also exploited the fact that, unlike the real data, the synthetic data are free from ambient noise; consequently, one can retain sufficient resolution in the results by optimizing the frequency content of the source signal. Further computational efficiency was achieved by using the concept of the exploding reflector which yields zero‐offset seismic sections without the need to evaluate the wave field for individual shot locations. These considerations opened up the possibility of carrying out a complete synthetic 3-D survey on a supercomputer to investigate the seismic response of a large‐scale structure located in Oklahoma. The analysis of results done on a geophysical workstation provides new insight regarding the role of interference and diffraction in the interpretation of seismic data.


1987 ◽  
Vol 12 (3) ◽  
pp. 349-352
Author(s):  
J. ENGEL ◽  
M. SALAI ◽  
B. YAFFE ◽  
R. TADMOR

Three-dimensional computerized imaging is a new modality of radiological imaging. This new technique transforms the two-dimensional slices of bi-plane CT into a three-dimensional picture by a computer’s monitor adjusted to the system. This system enables the physician to rotate the angle of viewing of the desired region to any desired angle. Moreover, this system can delete certain features of different densities from the picture, such as silicone implants, thus improving visualization. Our preliminary results using this technique are presented. The advantages, pitfalls, and suggested future applications of this new technique in hand surgery are discussed.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2320 ◽  
Author(s):  
Ke Li ◽  
Shuangxi Jing ◽  
Jiangong Yu ◽  
Xiaoming Zhang ◽  
Bo Zhang

The research on the propagation of surface waves has received considerable attention in order to improve the efficiency and natural life of the surface acoustic wave devices, but the investigation on complex Rayleigh waves in functionally graded piezoelectric material (FGPM) is quite limited. In this paper, an improved Laguerre orthogonal function technique is presented to solve the problem of the complex Rayleigh waves in an FGPM half-space, which can obtain not only the solution of purely real values but also that of purely imaginary and complex values. The three-dimensional dispersion curves are generated in complex space to explore the influence of the gradient coefficients. The displacement amplitude distributions are plotted to investigate the conversion process from complex wave mode to propagating wave mode. Finally, the curves of phase velocity to the ratio of wave loss decrements are illustrated, which offers extra convenience for finding the high phase velocity points where the complex wave loss is near zero.


Sign in / Sign up

Export Citation Format

Share Document