Comparative study of the growth curves of B. Subtilis, K. Pneumoniae, C. Xerosis, and E. Coli bacteria using nanometric silicon particles as a bacteriological sensor

Author(s):  
Lilyanna Perez ◽  
Marjorie Flores ◽  
Javier Avalos ◽  
L. San Miguel ◽  
O. Resto ◽  
...  
2002 ◽  
Vol 737 ◽  
Author(s):  
Lilyanna Pérez ◽  
Marjorie Flores ◽  
J. Avalos ◽  
L. San Miguel ◽  
O. Resto ◽  
...  

ABSTRACTIn this research nanometric particles from luminescent (625nm) porous silicon film were synthesized. This particles were later inoculated in bacterial strains of B. subtilis (BSi) and K. pneumoniae (KSi). A comparison of the behavior of their growth curve and the ones reported for C. xerosis (XSi) and E. coli (ESi) in presence of silicon nanoparticles is presented. The growth curve of BSi, as well as the KSi, present changes compared to their standard curves. The BSi growth curve grows below the standard curve after the fifth hour, while in the KSi this happens after the eighth hour. Based on our preliminary findings we can speculate that at this point in time a critical population is present, and this may give rise to the possible incorporation of the silicon particles by the bacteria, or a possible pleomorphism inhibits reproduction. The stationary region, in both cases, takes place sooner than in the standard curve. No significant oscillations are observed in any case, which differs form the XSi curve, were oscillations of intervals of almost 1 hour were reported. In addition, these curves have a different behavior when compared to the ESi growth curve, in which no significant differences between the standard and the particle containing sample were reported.


2019 ◽  
Vol 14 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Rowles H. L.

Probiotics are live microorganisms, which when ingested in sufficient amounts, confer health benefits to the host by improving the gut microflora balance. The purpose of this research was to determine whether commercial probiotic products containing multitude of commensal bacteria would reduce the growth rate of pathogenic bacteria, specifically Escherichia coli and Salmonella typhimurium. Growth curves were established, and the growth rates were compared for samples of E. coli, S. typhimurium, Nature’s Bounty Controlled Delivery probiotic, Sundown Naturals Probiotic Balance probiotic, and cocultures of the pathogenic bacteria mixed with the probiotics. The findings of this research were that the commercial probiotics significantly reduced the growth rate of E. coli and S. typhimurium when combined in cocultures. Probiotics containing multiple strains may be taken prophylactically to reduce the risk of bacterial infections caused by E. coli and S. typhimurium. Probiotics could be used to reduce the high global morbidity and mortality rates of diarrheal disease.


2007 ◽  
Vol 1064 ◽  
Author(s):  
Somesree GhoshMitra ◽  
Tong Cai ◽  
Santaneel Ghosh ◽  
Arup Neogi ◽  
Zhibing Hu ◽  
...  

ABSTRACTQuantum dots (QDs) are now used extensively for labeling in biomedical research due to their unique photoluminescence behavior, involving size-tunable emission color, a narrow and symmetric emission profile and a broad excitation range [1]. Uncoated QDs made of CdTe core are toxic to cells because of release of Cd2+ ions into the cellular environment. This problem can be partially solved by encapsulating QDs with polymers, like poly(N-isopropylacrylamide) (PNIPAM) or poly(ethylene glycol) (PEG). Based on biological compatibility, fast response as well as pH, temperature and magnetic field dependent swelling properties, hydrogel nanospheres has become carriers of drugs, fluorescence labels, magnetic particles for hyperthermia applications and particles that have strong optical absorption profiles for optical excitation. The toxicity of uncoated QDs are known; however, there have been a very limited number of studies specially designed to assess thoroughly the toxicity of nanosphere encapsulated QDs against QD density and dosing level.In this work, we present preliminary studies of biological effects of a novel QD based nanomaterial system on Escherichia coli (E. coli) bacteria. Cadmium chalcogenide QDs provide the most attractive fluorescence labels in comparison with routine dyes or metal complexes. Nanospheres on the other hand are the most commonly used carriers of fluorescence labels for fluorescence detection. The integration of fluorescent QDs in nanospheres therefore provides a new generation of fluorescence markers for biological assays. Hydrogels based on PNIPAM is a well known thermoresponsive polymer that undergoes a volume phase transition across the low critical solution (LCST) [2]. Therefore, the inherent temperature-sensitive swelling properties of PNIPAM offer the potentiality to control QD density within the nanospheres. In the present work, E. coli growth was monitored as E. coli served as a representation of how cells might respond in the presence of hydrogel encapsulated QDs in their growth environment. The present work describes the successful encapsulation of CdTe QDs in PNIPAM gel network. Microgel encapsulated QDs were synthesized by first preparing PNIPAM microspheres with cystaminebisacrylamide as a crosslinker and CdTe QDs capped with a stabilizer. The CdTe QDs were bonded into PNIPAM microgels through the replacement of CdTe's stabilizer inside PNIPAM microspheres. Growth curves were generated for E. coli growing in 20 mL of LB media containing hydrogel encapsulated QD nanospheres (400 nm diameter) at relatively higher (0.5mg/mL) and lower (0.01mg/mL) concentration of solution. From the growth curves, there was no evidence at lower concentration (0.01mg/mL) that the hydrogel encapsulated QDs prevent the microbial cells from growing but at higher concentration (0.5mg/mL), microbial growth was inhibited. Transmission Electron Microscopy (TEM) was used to characterize QD size and density inside the hydrogel nanospheres. Scanning Electron Microscopy (SEM) was used to observe size and morphology of the hydrogel particles. Further investigation is going on cell growth response at different QD density and to evaluate the limiting hydrogel concentration for different QD densities.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Álvaro de Jesús Ruíz-Baltazar ◽  
Simón Yobanny Reyes-López ◽  
D. Larrañaga ◽  
R. Pérez

Nanoparticles of Ag with different sizes and structures were obtained and studied. Two methods for reductions of Ag ions were employed, chemical reduction by sodium borohydride and ethylene glycol. Cuboctahedral and icosahedral structures were obtained. Molecular simulations were carried out in order to evaluate the reactivity of both structures. On the other hand, the electrochemical activity and antibacterial effect (E. coli) of the cuboctahedral and icosahedral structures were measured experimentally. The results obtained by molecular simulation, cyclic voltammetry, and antibacterial effect were compared and discussed in this work.


2014 ◽  
Vol 1004-1005 ◽  
pp. 978-982
Author(s):  
Ling Ling Zhang ◽  
Wei Qiang Sun ◽  
Yu Xia ◽  
Ya Ping Lv

Combination of disinfection method gives advantages. In this work, inactivation of E. coli using ZnO nanofluids and ultrasound is evaluated. Growth curves of bacteria were investigated to reveal the inactivation activities of ZnO nanofluids and ultrasound. The effects of combination of ZnO nanofluids and ultrasound, ultrasound time, ultrasound induction point and the induction order of ZnO nanofluids and ultrasound were studied. The results suggested that combination of ZnO nanofluids and ultrasound gives better inactivation effect on E. coli when comparing with single disinfection method. Ultrasound for 10 s helped ZnO nanofluids inhibiting bacteria better than ultrasound for 30 s /60 s. Ultrasound induction point (at 0 hr, 2 hr or 4hr) did not affect on ZnO nanofluids to exhibit the inhibiting property. Induction ultrasound prior to adding ZnO nanofluids showed the better inactivation effect on E. coli. The results also displayed that in this work, ultrasound was mainly worked as a pre-treatment step, instead of a disinfection method.


2019 ◽  
Vol 163 ◽  
pp. 270-280
Author(s):  
Mun-Ju Kim ◽  
Chang-Gu Lee ◽  
Chang-Hee Lee ◽  
Seong-Jik Park

2015 ◽  
Vol 34 ◽  
pp. 61-66
Author(s):  
Kamarulazizi Ibrahim ◽  
Mohammad Hafiz Khalid ◽  
Mohamed Hassan Eisa ◽  
Mohd Nazalan Najimudin ◽  
Mohammad A. Al Rajhi ◽  
...  

In this work, a comparative study using atomic force microscopy (AFM) and field emission–scanning electron microscopy (FESEM) has been carried out to assess the morphology of single cellEscherichia colibacteria (E-coli).E-colibacteria are a major concern for public health. Attention was focused on the certain strains ofE-colibacteria, because some strains can be toxic and cause food poisoning. TheE-colibacteria have attracted much research interest because this bacterium is easily to get, cheap and rapid reproductively. Imaging ofE-colirecently, was improved by using high resolution microscopy. Current techniques for detection such as, AFM and FESEM has attracted great interest and emerging as a potentially powerful whole-organism fingerprinting tool for the rapid identification of bacteria. The obtained results of AFM and FESEM techniques have been compared to show the image quality of single cellE-coli.


Sign in / Sign up

Export Citation Format

Share Document