Room-temperature near IR fluorescence of high optical quality KTP

Author(s):  
S. M. Hegde ◽  
K. L. Schepler ◽  
R. D. Peterson ◽  
D. E. Zelmon
2010 ◽  
Vol 96 (4) ◽  
pp. 043101 ◽  
Author(s):  
Damien Bordel ◽  
Denis Guimard ◽  
Mohan Rajesh ◽  
Masao Nishioka ◽  
Emmanuel Augendre ◽  
...  

2020 ◽  
Vol 221 ◽  
pp. 117079 ◽  
Author(s):  
Marco Cinquino ◽  
Laura Polimeno ◽  
Giovanni Lerario ◽  
Milena De Giorgi ◽  
Anna Moliterni ◽  
...  

2013 ◽  
Vol 11 (7) ◽  
pp. 1163-1171
Author(s):  
Judita Šukytė ◽  
Remigijus Ivanauskas

AbstractThe preparative conditions were optimized to get chalcogens layers on the polymer — polyamide PA surface by sorption at room temperature using sodium telluropentathionate, Na2TeS4O6. Further interaction of chalcogenized dielectric with copper’s (I/II) salt solution leads to the formation of mixed CuxSy-CuxTey layers. Optical, electrical and surface characteristics of the layers are highly controlled by the deposition parameters. The stoichiometry of these layers was established by UV-Visible and AA spectrometry. Optical absorption (transmittance) experiments show the samples are of high optical quality. The band gaps of thin films were obtained from their optical absorption spectra, which were found in the range of 1.44–2.97 eV. XRD was used in combination with AFM to characterize chalcogenides layers’ structural features. XRD analysis confirmed the formation of mixed copper chalcogenides’ layers in the surface of PA with binary phases such as Cu2Te, Cu3.18Te2, copper telluride, Cu2.72Te2, vulcanite, CuTe, anilite, Cu7S4 and copper sulfide, Cu1.8S. The crystallite sizes of thin films calculated by the Scherer formula were found to be in the range of 3.07–13.53 nm for CuxSy crystallites and 4.06–20.79 nm for CuxTey crystallites. At room temperature an electrical resistance of CuxSy-CuxTey layers varies from 3.0×103 kΩ□−1 to 1.0 kΩ□−1.


1993 ◽  
Vol 329 ◽  
Author(s):  
Michael Canva ◽  
Patrick Georges ◽  
Jean-Fran^ois Perelgritz ◽  
Alain Brun ◽  
Fréddric Chaput ◽  
...  

AbstractPhotoresistant laser dyes were trapped in silica based xerogel host matrices to obtain solid state tunable lasers. For this purpose very dense xerogel samples with improved chemical and physical properties were prepared at room temperature by the sol-gel technology. The as-prepared materials were polished to obtain optical quality surfaces and were used as new lasing media.Lasing action of such different dyes as rhodamine, perylene and pyrromethene doping dense sol-gel matrices was demonstrated. Efficiencies of 30 % or lifetimes of more than 100,000 shots were achieved with different new ≤dye dopant/host matrix≥ couples. Their different performances are reviewed and discussed.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2005 ◽  
Vol 86 (7) ◽  
pp. 071917 ◽  
Author(s):  
Y. D. Wang ◽  
S. J. Chua ◽  
S. Tripathy ◽  
M. S. Sander ◽  
P. Chen ◽  
...  

1994 ◽  
Vol 14 (1-3) ◽  
pp. 155-160 ◽  
Author(s):  
Tatsuhisa Kato

Absorption spectra are detected for C60− and C602− produced electrolytically in solution at room temperature. Theoretical analysis of the spectrum of C60− by CNDO/S calculations gives an interpretation of the characteristic near-IR bands, the weak visible bands, and the strong bands in the UV region. The emission spectrum of C60− is a mirror image of the near-IR absorption band, and the detection of the emission reconfirms our original assignment of the absorption spectrum. The nature of the spectrum of C602− is characterized by a similar orbital picture to that of C60−. Further laser experiments of significance are proposed.


1989 ◽  
Vol 172 ◽  
Author(s):  
Mahmoud R. Shahriari ◽  
Tariq Iqbal ◽  
Paul R. Foy ◽  
Steve J. Saggese ◽  
G. H. Sigel

AbstractSeveral glass systems based on AIF3 have been synthesized and fabricated into preforms by controlled melting and rotational casting. High optical quality preforms have been drawn into fibers using a specially modified drawing facility. The drawing tower is enclosed with a vertical glove box in which the levels of both moisture and oxygen are kept below 1 ppm during the drawing. The AIF3 -based fibers have shown dramatically superior chemical durability relative to the ZrF4 -based glass fibers. Selected optical, mechanical and thermal properties of these fibers will be presented. AIF3 -based glass fibers offer interesting opportunities for short range applications in the 2–4 micron region of the infrared such as sensing, remote spectroscopy and laser power delivery.


Sign in / Sign up

Export Citation Format

Share Document