Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

Author(s):  
Gao Ma ◽  
Hui Li ◽  
Wensong Zhou ◽  
Guijun Xian
2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2021 ◽  
pp. 136943322110585
Author(s):  
Seyed Mehrdad Elhamnike ◽  
Rasoul Abbaszadeh ◽  
Vahid Razavinasab ◽  
Hadi Ziaadiny

Exposure of buildings to fire is one of the unexpected events during the life of the structure. The heat from the fire can reduce the strength of structural members, and these damaged members need to be strengthened. Repair and strengthening of concrete members by fiber-reinforced polymer (FRP) composites has been one of the most popular methods in recent years and can be used in fire-damaged concrete members. In this paper, in order to provide further data and information about the behavior of post-heated circular concrete columns confined with FRP composites, 30 cylindrical concrete specimens were prepared and subjected under four exposure temperatures of 300, 500, 700, and 900. Then, specimens were repaired by carbon fiber reinforced polymer composites and tested under axial compression. Results indicate that heating causes the color change, cracks, and weight loss of concrete. Also, with the increase of heating temperature, the shape of stress–strain curve of FRP-retrofitted specimens will change. Therefore, the main parts of the stress–strain curve such as ultimate stress and strain and the elastic modulus will change. Thus, a new stress–strain model is proposed for post-heated circular concrete columns confined by FRP composites. Results indicate that the proposed model is in a good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document