SU-E-T-701: Equivalence and Differences Between Robust Optimization Methods and PTV Based Optimization Method for IMRT and IMPT

2013 ◽  
Vol 40 (6Part22) ◽  
pp. 367-367
Author(s):  
S Ge ◽  
M Quan ◽  
L Zhang ◽  
W Liu ◽  
R Mohan
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4642
Author(s):  
Li Dai ◽  
Dahai You ◽  
Xianggen Yin

Traditional robust optimization methods use box uncertainty sets or gamma uncertainty sets to describe wind power uncertainty. However, these uncertainty sets fail to utilize wind forecast error probability information and assume that the wind forecast error is symmetrical and independent. This assumption is not reasonable and makes the optimization results conservative. To avoid such conservative results from traditional robust optimization methods, in this paper a novel data driven optimization method based on the nonparametric Dirichlet process Gaussian mixture model (DPGMM) was proposed to solve energy and reserve dispatch problems. First, we combined the DPGMM and variation inference algorithm to extract the GMM parameter information embedded within historical data. Based on the parameter information, a data driven polyhedral uncertainty set was proposed. After constructing the uncertainty set, we solved the robust energy and reserve problem. Finally, a column and constraint generation method was employed to solve the proposed data driven optimization method. We used real historical wind power forecast error data to test the performance of the proposed uncertainty set. The simulation results indicated that the proposed uncertainty set had a smaller volume than other data driven uncertainty sets with the same predefined coverage rate. Furthermore, the simulation was carried on PJM 5-bus and IEEE-118 bus systems to test the data driven optimization method. The simulation results demonstrated that the proposed optimization method was less conservative than traditional data driven robust optimization methods and distributionally robust optimization methods.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4054
Author(s):  
Kyung-Soo Kim ◽  
Yong-Suk Choi

As the performance of devices that conduct large-scale computations has been rapidly improved, various deep learning models have been successfully utilized in various applications. Particularly, convolution neural networks (CNN) have shown remarkable performance in image processing tasks such as image classification and segmentation. Accordingly, more stable and robust optimization methods are required to effectively train them. However, the traditional optimizers used in deep learning still have unsatisfactory training performance for the models with many layers and weights. Accordingly, in this paper, we propose a new Adam-based hybrid optimization method called HyAdamC for training CNNs effectively. HyAdamC uses three new velocity control functions to adjust its search strength carefully in term of initial, short, and long-term velocities. Moreover, HyAdamC utilizes an adaptive coefficient computation method to prevent that a search direction determined by the first momentum is distorted by any outlier gradients. Then, these are combined into one hybrid method. In our experiments, HyAdamC showed not only notable test accuracies but also significantly stable and robust optimization abilities when training various CNN models. Furthermore, we also found that HyAdamC could be applied into not only image classification and image segmentation tasks.


2021 ◽  
Vol 13 (4) ◽  
pp. 707
Author(s):  
Yu’e Shao ◽  
Hui Ma ◽  
Shenghua Zhou ◽  
Xue Wang ◽  
Michail Antoniou ◽  
...  

To cope with the increasingly complex electromagnetic environment, multistatic radar systems, especially the passive multistatic radar, are becoming a trend of future radar development due to their advantages in anti-electronic jam, anti-destruction properties, and no electromagnetic pollution. However, one problem with this multi-source network is that it brings a huge amount of information and leads to considerable computational load. Aiming at the problem, this paper introduces the idea of selecting external illuminators in the multistatic passive radar system. Its essence is to optimize the configuration of multistatic T/R pairs. Based on this, this paper respectively proposes two multi-source optimization algorithms from the perspective of resolution unit and resolution capability, the Covariance Matrix Fusion Method and Convex Hull Optimization Method, and then uses a Global Navigation Satellite System (GNSS) as an external illuminator to verify the algorithms. The experimental results show that the two optimization methods significantly improve the accuracy of multistatic positioning, and obtain a more reasonable use of system resources. To evaluate the algorithm performance under large number of transmitting/receiving stations, further simulation was conducted, in which a combination of the two algorithms were applied and the combined algorithm has shown its effectiveness in minimize the computational load and retain the target localization precision at the same time.


2021 ◽  
Vol 10 (6) ◽  
pp. 420
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Qingwen Qi ◽  
Yongji Wang

Image segmentation is of significance because it can provide objects that are the minimum analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods usually set parameters to identify geo-objects, and different parameter settings lead to different segmentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results. Currently, many parameter optimization methods have been developed and successfully applied to the identification of single geo-objects. However, few studies have focused on the recognition of the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of semantic geo-objects is likely more crucial than that of single geo-objects because the former type of recognition is more correlated with the human perception. This paper proposes an approach to recognize semantic geo-objects. The key concept is that a single geo-object is the smallest component unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation (MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods to validate the proposed approach. The results show that the proposed approach can determine the scale parameters, which can produce semantic geo-objects.


2013 ◽  
Vol 726-731 ◽  
pp. 3811-3817
Author(s):  
Yuan Feng ◽  
Ji Xian Wang

The analysis of the slope stability is important in soil conservation. To analyze the slope stability, optimization methods were coded and compared with the traditional experience-based methods. Furthermore, the results were visualized in the program, so that the user can easily check the results and can designate an area, in which the program seeks the center and radius of the most hazardous slide arc. Moreover, the graphic interaction function was implemented in the program. In addition, the Standard Model One, recommended by ACAD (The Association for Computer Aided Design), was calculated by the program, of which the results (safety factor Ks=0.95~0.96) were smaller than the official recommend value (Ks=1). It is because that the traditional slice method, which neglects the normal stress and shear stress between the slices, was applied for calculation of Ks.


Author(s):  
Kazufumi Ito ◽  
Karl Kunisch

Abstract In this paper we discuss applications of the numerical optimization methods for nonsmooth optimization, developed in [IK1] for the variational formulation of image restoration problems involving bounded variation type energy criterion. The Uzawa’s algorithm, first order augmented Lagrangian methods and Newton-like update using the active set strategy are described.


Author(s):  
Ozan G. Erol ◽  
Hakan Gurocak ◽  
Berk Gonenc

MR-brakes work by varying viscosity of a magnetorheological (MR) fluid inside the brake. This electronically controllable viscosity leads to variable friction torque generated by the actuator. A properly designed MR-brake can have a high torque-to-volume ratio which is quite desirable for an actuator. However, designing an MR-brake is a complex process as there are many parameters involved in the design which can affect the size and torque output significantly. The contribution of this study is a new design approach that combines the Taguchi design of experiments method with parameterized finite element analysis for optimization. Unlike the typical multivariate optimization methods, this approach can identify the dominant parameters of the design and allows the designer to only explore their interactions during the optimization process. This unique feature reduces the size of the search space and the time it takes to find an optimal solution. It normally takes about a week to design an MR-brake manually. Our interactive method allows the designer to finish the design in about two minutes. In this paper, we first present the details of the MR-brake design problem. This is followed by the details of our new approach. Next, we show how to design an MR-brake using this method. Prototype of a new brake was fabricated. Results of experiments with the prototype brake are very encouraging and are in close agreement with the theoretical performance predictions.


Sign in / Sign up

Export Citation Format

Share Document