SU-F-BRA-16: Development of a Radiation Monitoring Device Using a Low-Cost CCD Camera Following Radionuclide Therapy

2015 ◽  
Vol 42 (6Part26) ◽  
pp. 3537-3537
Author(s):  
S Taneja ◽  
L Che Fru ◽  
V Desai ◽  
J Lentz ◽  
C Lin ◽  
...  
Author(s):  
Stanley Glenn E. Brucal ◽  
Jerome R. Guemo ◽  
Samboy Jim B. Montante ◽  
Carlos Angelo E. Ng ◽  
Denzel Jansen C. Wong

Author(s):  
Olalekan Kabiru Kareem ◽  
Aderibigbe Adekitan ◽  
Ayokunle Awelewa

Electric power is the bedrock of our modern way of life. In Nigeria, power supply availability, sufficiency and reliability are major operational challenges. At the generation and transmission level, effort is made to ensure status monitoring and fault detection on the power network, but at the distribution level, particularly within domestic consumer communities there are no fault monitoring and detection devices except for HRC fuses at the feeder pillar. Unfortunately, these fuses are sometimes replaced by a copper wire bridge at some locations rendering the system unprotected and creating a great potential for transformer destruction on overload. This study is focused on designing an on-site power system monitoring device to be deployed on selected household entry power cables for detecting and indicating when phase off, low voltage, high voltage, over current, and blown fuse occurs on the building’s incomer line. The fault indication will help in reducing troubleshooting time and also ensure quick service restoration. After design implementation, the test result confirms design accuracy, device functionality and suitability as a low-cost solution to power supply system fault monitoring within local communities.


2021 ◽  
Vol 9 (1) ◽  
pp. 23-31
Author(s):  
Mohammed Belayet Hossain ◽  
Dr. Mohammad Sohelur Rahman ◽  
Dr. Mohammad Amir Hossain Bhuiyan ◽  
Selina Yeasmin

Objective: The pollution free environment is required for healthy life. The real-time radiation monitoring is very important for radiation hazard detection in the environment. The excess life-time cancer risk (ELCR) on public is to assess based on the real-time radiation monitoring data in the area. Methods: The real-time radiation monitoring was performed using portable digital radiation monitoring device. This real-time digital portable radiation monitoring device meets all European CE standards as well as the American “FCC 15 standard”. The real-time digital portable radiation monitoring device was placed at 1 meter above the ground on tripod and data collection time for each monitoring point (MP) was 1 hour. 27 MPs were chosen for collection of real-time radiation data at various outdoor environment in Motijheel Thana, Dhaka from May-August 2018.Results: The real-time radiation dose rates at Motijheel Thana due to natural radionuclides were ranged from 0.095 ± 0.041 µSv.h-1 to 0.185 ± 0.042 µSv.h-1 with an average of 0.147 ± 0.047 µSv.h-1. The annual effective dose to public from outdoor environmental radiation at Motijheel Thana were found to be 0.166 ± 0.066 mSv to 0.324 ± 0.061 mSv with an average of 0.257 ± 0.039 mSv. Excess Life-time Cancer Risk (ELCR) on public are also estimated based on annual effective dose that is ranged from 0.662 ×10-3 to 1.289 ×10-3 with an average value of 1.025 ×10-3, which is higher than world average value of 0.29×10-3. Conclusion: This type of study is required for detection of the radiation hazard arising from the natu-ral as well as man-made sources and also for generation of the baseline database. From this study, it is observed that there is no pose any radiation hazard in the study area due to man-made sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johnathan Kongoletos ◽  
Ethan Munden ◽  
Jennifer Ballew ◽  
Daniel J. Preston

AbstractVentilation, including fume hoods, consumes 40–70% of the total energy used by modern laboratories. Energy-conscious fume hood usage—for example, closing the sash when a hood is unused—can significantly reduce energy expenditures due to ventilation. Prior approaches to promote such behaviors among lab users have primarily relied on passive feedback methods. In this work, we developed a low-cost fume hood monitoring device with active feedback to alert lab users when a fume hood is left open and unused. Using data collected by the building management system, we observed a 75.6% decrease in the average sash height after installation of these “Motion and Sash Height” (MASH) alarms, which would result in a reduction roughly equal to 43% of the annual carbon emissions of a typical American vehicle, for each fume hood. The MASH alarm presented here reduced energy costs by approximately $1,159 per year, per hood, at MIT.


Author(s):  
T. Renault ◽  
M. Vardelle ◽  
A. Grimaud ◽  
P. Fauchais ◽  
H. Hoffman

Abstract The quality of plasma sprayed coatings depends strongly on substrate surface preparation, especially roughness, grit residue, and oxidation stage; particle spray jet position and size relative to the plasma jet; impacting particle distribution; particle velocity, temperature, and size prior to impact; substrate temperature; and pass thickness. A simple and low-cost spray and deposit control system developed in our laboratory allows to monitor on-line the position, shape, and centroid of the hot particle spray jet. Such a tool has proved to be very sensitive to any drift in powder injection conditions and torch input parameters. Although it gives no direct information on particle velocity and temperature, this system can be easily implemented in an industrial environment and help to maintain constant the particle parameters during spraying. A CCD camera is used in conjunction with a pyrometer making it possible to measure simultaneously substrate temperature. The system can monitor coating parameters such as deposition efficiency and residual stresses. This paper describes how the system can be used to set the tolerance range of process input parameters to obtain coating parameters within given specifications.


Author(s):  
Sami D. Alaruri

A low-cost CCD camera system for imaging Coulter orifices ranging in diameter between 20 µm and 2 mm has been developed and tested. The imaging system incorporates a 6X magnifying lens for viewing the required range of Coulter orifices and LEDs (Light emitting diodes) lamp for back illuminating the orifices. Geometric optic calculations using Zemax® for the micro-lens interfaced with the camera suggest that the spot diameter and the MTF spatial frequency at field of view equal to 0 ° and at the image plane are 5.13 µm and 271.6 lines/mm (at contrast= 37.6%), respectively. Images captured with the camera system for 20 µm, 100 µm and 2 mm diameter orifices are provided. Furthermore, a discussion for the camera micro-lens modulation transfer function, spot diagram, root-mean-square wavefront error versus field and optical path difference plots is given.


2017 ◽  
Author(s):  
Precious J Kilimo ◽  
Tai Le ◽  
Ngoc T Phan ◽  
Huy-Dung Han ◽  
Hoc T Hoang ◽  
...  

BACKGROUND Having mobile devices that provide patients with the ability to record and monitor the electrical activity of their heart enhances patient self-care and the early detection of irregular heartbeat (cardiac arrhythmia), yet few such devices exist in Vietnam. Challenges exist for introducing mobile electrocardiography (ECG) monitoring devices in Vietnam, including patient accessibility and affordability. A low-cost mobile ECG monitoring device designed and developed in Vietnam, which allows patients to easily measure their heart’s electrical activity and navigate recordings, may be a solution. OBJECTIVE The aim of this project is to assess the usability of the MD-Link system, a newly developed mobile handheld 1-lead ECG device, in detecting patients with irregular heartbeat. We will compare its outputs to the standard printed outputs of a 12-lead electrocardiogram generated by the Nihon Kohden Cardiofax S Electrocardiograph Model ECG-1250K. METHODS We will conduct a cross-sectional study in two stages, including the measurement of ECG signals of patients using the MD-Link and the Nihon Kohden Cardiofax S and analysis of the selected standard outputs collected from the ECG recordings of the MD-Link and the Nihon Kohden Cardiofax S. The MD-Link consists of (1) a mobile device (eg, a smartphone); (2) a lead wire with 2 disposable electrodes; and (3) an easy-to-use mobile app interface enabling the upload and accurate display of ECG recordings to patients and their clinicians. Our research team, consisting of members from Dartmouth College; the Institute of Health, Population and Development; Hanoi University of Science and Technology; and physicians and nurses from Thanh Chan Clinic, will assist in carrying out this project. RESULTS We will proceed with a publication plan that includes a project report and, ultimately, articles for peer-reviewed journals. We also hope to disseminate our work at relevant conferences to provide more coverage and exposure to the MD-Link mobile device. Recruitment and data collection were completed in January 2018. Data analysis started in February 2018 and is ongoing. Results are expected mid-2019. CONCLUSIONS At the end of this project, we will have developed and tested the MD-Link, a low-cost mobile ECG monitoring device, with some supportive comparisons to standard ECG devices commonly used in heart clinics or hospitals in Vietnam. Our long-term goal is for the MD-Link to be easily accessible, affordable, and to fit into a patient’s daily routine, thus improving the care and treatment of patients with cardiovascular diseases (CVDs). INTERNATIONAL REGISTERED REPOR RR1-10.2196/8762


Sign in / Sign up

Export Citation Format

Share Document